Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 362: 142639, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909865

RESUMO

Anaerobic digestion of floated paperboard sludge (PS) cake suffers from volatile fatty acids (VFAs) accumulation, nutrient unbalanced condition, and generation of digestate with a risk of secondary pollution. To overcome these drawbacks, sewage sludge (SS) was added to PS cake for biogas recovery improvement under a co-digestion process followed by the thermal treatment of solid fraction of digestate for biochar production. Batch experimental assays were conducted at different SS:PS mixing ratios of 70:30, 50:50, 30:70, and 20:80 (w/w), and their anaerobic co-digestion performances were compared to the mono-digestion systems at 35 ± 0.2 °C for 45 days. The highest methane yield (MY) of 241.68 ± 14.81 mL/g CODremoved was obtained at the optimum SS:PS ratio of 50:50 (w/w). This experimental condition was accompanied by protein, carbohydrate, and VFA conversion efficiencies of 47.3 ± 3.2%, 46.8 ± 3.2%, and 56.3 ± 3.8%, respectively. The synergistic effect of SS and PS cake encouraged the dominance of Bacteroidota (23.19%), Proteobacteria (49.65%), Patescibacteria (8.12%), and Acidovorax (12.60%) responsible for hydrolyzing the complex organic compounds and converting the VFAs into biomethane. Further, the solid fraction of digestate was subjected to thermal treatment at a temperature of 500 °C for 2.0 h, under an oxygen-limited condition. The obtained biochar had a yield of 0.48 g/g dry digestate, and its oxygen-to-carbon (O/C), carbon-to-nitrogen (C/N), and carbon-to-phosphorous (C/P) ratios were 0.55, 10.23, and 16.42, respectively. A combined anaerobic co-digestion/pyrolysis system (capacity 50 m3/d) was designed based on the COD mass balance experimental data and biogenic CO2 market price of 22 USD/ton. This project could earn profits from biogas (12,565 USD/yr), biochar (6641 USD/yr), carbon credit (8014 USD/yr), and COD shadow price (6932 USD/yr). The proposed project could maintain a payback period of 6.60 yr. However, further studies are required to determine the associated life cycle cost model that is useful to validate the batch experiment assumptions.


Assuntos
Carvão Vegetal , Ácidos Graxos Voláteis , Metano , Esgotos , Esgotos/química , Carvão Vegetal/química , Ácidos Graxos Voláteis/análise , Anaerobiose , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Biocombustíveis , Papel
2.
Sci Rep ; 13(1): 19597, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949960

RESUMO

Chromium is a hazardous compound from industrial processes, known for its toxicity, mutagenicity, teratogenicity, and carcinogenicity. Chemical methods are efficient but cost-effective alternatives with reduced sludge are sought. Electro-coagulation, utilizing low-cost iron plate electrodes, was explored for factual tannery wastewater treatment in this manuscript. Operating parameters such as initial chromium concentration, voltage, electrode number, operating time, agitation speed and current density has been studied to evaluate the treatment effeciency. Under optimal conditions (15 V, 0.4 mA/cm2, 200 rpm, 330 ppm chromium, 8 iron electrodes with a total surface area of 0.1188 m2, 3 h), chromium elimination was 98.76%. Iron anode consumption, power use, and operating cost were 0.99 gm/L, 0.0143 kW-h/L, and 160 EGP/kg of chromium eliminated, respectively. Kinetics studies were pursued first-order reaction (97.99% correlation), and Langmuir isotherms exhibited strong conformity (Langmuir R2: 99.99%). A predictive correlation for chromium elimination (R2: 97.97%) was developed via statistical regression. At HARBY TANNERY factory in Egypt, industrial sewage treatment achieved a final chromium disposal rate of 98.8% under optimized conditions.

3.
Bioresour Technol ; 341: 125838, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34467888

RESUMO

With escalating global demand for renewable energy, exploitation of farm wastes (i.e., agriculture straw wastes (ASWs), livestock wastewater (LW) and sewage sludge (SS)) has been considered to attain maximum methane yield (MY) via anaerobic digestion (AD). Results pointed that mixture of SS and LW as anaerobes' source with 20 g of ASWs/300 mL of working volume achieved maximum MY and volatile solid (VS) removal efficiency of 0.44 (±0.05) L/gVS and 51.4 (±4.1)%, respectively. This was mainly because of emerging heavy duty bacterial species (i.e., Syntrophorhabdaceae and Synergistaceae) and archaeal community (i.e, Methanosarcina and Methanoculleus) after 70 days of anaerobic incubation. This was acquired along with boosting enzymatic activity, especially xylanase, cellulase and protease up to 71.5(±7.9), 179.3(±14.3) and 207.2(±16.2) U/100 mL, respectively. Furthermore, the digestate contained high concentrations of NH4+ (960.1±(76.8) mg/L), phosphorus (126.3±(10.1) mg/L) and trace metals, making it a good candidate as organic fertilizer.


Assuntos
Metano , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Fazendas , Esgotos
4.
Waste Manag ; 129: 20-25, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34020372

RESUMO

A novel approach of using two stage anaerobic digestion coupled with electrodialysis technology has been investigated. This approach was used to improving bio hydrogen and methane yields from food waste while simultaneously producing a green chemical feedstock. The first digester was used for hydrogen production and the second digester was used for methane production. The first digester was combined with continuous separation of volatile fatty acids using electrodialysis. The concentrations of carbohydrates, proteins and fats in the prepared food waste were 22.7%, 5.7% and 5.2% respectively. Continuous removal of volatile fatty acids during fermentation in the hydrogen digester not only increased hydrogen yields but also increased the production rate of volatile fatty acids. As a result of continuous VFA separation, hydrogen yields increased from 17.3 mL H2/g VS fermenter to 33.68 mL H2/g VS fermenter. Methane yields also increased from 28.94 mL CH4/g VS fermenter to 43.94 mL CH4/g VS fermenter. This represents a total increase in bio-energy yields of 77.1%. COD reduced by 73% after using two stage anaerobic digestion, however, this reduction increased to 86.7% after using electrodialysis technology for separation of volatile fatty acids. Electrodialysis technology coupled with anaerobic digestion improved substrate utilization, increased bioenergy yields and looks to be promising for treating complex wastes such as food waste.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Reatores Biológicos , Ácidos Graxos Voláteis , Hidrogênio , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA