Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 2): 132252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729503

RESUMO

In this study, we developed a novel nanocomposite by synthesizing zinc (ZnNPs), copper (CuNPs), and silver (AgNPs) nanoparticles using olive leaf extract and incorporating them into a chitosan polymer. This approach combines the biocompatibility of chitosan with the antimicrobial and anticancer properties of metal nanoparticles, enhanced by the phytochemical richness of olive leaf extract. The significance of our research lies in its potential to offer a biodegradable and stable alternative to conventional antibiotics and cancer treatments, particularly in combating multidrug-resistant bacteria and various cancer types. Comprehensive characterization through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and Transmission Electron Microscopy (TEM) confirmed the successful synthesis of the nanocomposites, with an average size of ~22.6 nm. Phytochemical analysis highlighted the antioxidant-rich composition of both the olive leaf extract and the nanoparticles themselves. Functionally, the synthesized nanoparticles exhibited potent antimicrobial activity against multidrug-resistant bacterial strains, outperforming traditional antibiotics by inhibiting key resistance genes (ermC, tetX3-q, blaZ, and Ery-msrA). In anticancer assessments, the nanoparticles showed selective cytotoxicity towards cancer cells in a concentration-dependent manner, with CuNPs and AgNPs showing particularly strong anticancer effects, while demonstrating minimal toxicity towards normal cells. ZnNPs were noted for their low cytotoxicity, highlighting the safety profile of these nanoparticles. Further, the nanoparticles induced apoptosis in cancer cells, as evidenced by the modulation of oncogenes (P21, P53, and BCL2), suggesting their therapeutic potential. The findings of our study underscore the versatile applications of these biogenic nanoparticles in developing safer and more effective antimicrobial and anticancer therapies.


Assuntos
Antineoplásicos , Quitosana , Química Verde , Nanopartículas Metálicas , Nanocompostos , Olea , Extratos Vegetais , Folhas de Planta , Quitosana/química , Quitosana/farmacologia , Nanocompostos/química , Olea/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Humanos , Folhas de Planta/química , Nanopartículas Metálicas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Prata/química , Prata/farmacologia , Linhagem Celular Tumoral
2.
Food Chem ; 427: 136682, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37379749

RESUMO

Lactoferrin is a multifunctional protein that has various biological activities and applications. However, different sources of lactoferrin may have different properties and characteristics. In this study, we hypothesized that ultra-performance liquid chromatography quadrupole time-of-flight mass spectroscopy (UPLC-QTOF-IMS) coupled with UNIFI software can differentiate bovine lactoferrin from camel lactoferrin based on the unique peptides produced by trypsin digestion. We enzymatically digested the proteins using trypsin and analyzed the resulting peptides using Uniport software and in silico digestion. We identified 14 marker peptides that were unique to bovine lactoferrin and could be used to distinguish it from camel lactoferrin. We also demonstrated the advantages of 4D proteomics over 3D proteomics in separating and identifying peptides based on their mass, retention time, intensity, and ion mobility. This method can be applied to other lactoferrin sources and improve the quality control and authentication of lactoferrin products.


Assuntos
Camelus , Lactoferrina , Animais , Lactoferrina/química , Camelus/metabolismo , Proteômica , Tripsina/metabolismo , Peptídeos/química , Cromatografia Líquida de Alta Pressão
3.
J Environ Manage ; 332: 117351, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731407

RESUMO

In this work, CdS quantum dots (QDs) were successfully confined in polysulfone membrane (PSM) to develop a photoactive membrane under solar illumination that was suited in wastewater remediating system. The CdS@PSM membranes were prepared using the nonsolvent induced phase separation (NIPS) approach. Optical measurements show the confinement of CdS quantum dots (QDs) in the PS matrix within the narrowest band gap (2.41 eV) at 5 wt% loading. PS has two strong emission peaks at 411 and 432 nm due to photoelectron-hole recombination on pure PSM's surface. Adding 1 wt% CdS QDs to PSM reduced the earlier peak and blue-shifted the latter, within the appearance of three emission peaks attributed to the near band-edge emission of confined CdS QDs. Overloading CdS reduced all emission peaks. Moreover, fluorimetric monitoring of •OH radicals indicates that PSM produces the least amount of photogenerated •OH radicals while CdS@PSM(5 wt%) achieved the highest productivity. Examining the developed membranes in detoxifying methylene blue (MB) from aqueous solution of natural pH 8.1 showed weak adsorption in dark over 90 min of contact while switching to solar illumination significantly photodegrade MB where the degradation efficiency starts from 49% for pure PSM to 79% for CdS@PSM(5 wt%). Influence of pH was found crucial on photodegradation efficacy. Acidic pH 3 showed the weakest photodegradation efficacy, while the alkaline pH 12 was 18.88 times more effective. The used CdS@PSM (5 wt%) was successfully photo-renovated by soaking in 10 mL of NaOH solution under Solar illumination for 15 min to be used in 4 consecutive photodegradation cycles with insignificant decrease in efficacy. These findings are promising and could lead to a high-efficiency, sustainable photocatalytic suite.


Assuntos
Pontos Quânticos , Águas Residuárias , Luz Solar , Polímeros
4.
Food Chem ; 367: 130661, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34348197

RESUMO

Cow (CwC) and camel casein (CaC) hydrolysates were generated using Alcalase™ (CwCA and CaCA) and Pronase-E (CwCP and CaCP) each for 3 and 6 h, and investigated for their potential to inhibit key lipid digesting enzymes i.e., pancreatic lipase (PL) and cholesteryl esterase (CE). Results revealed stronger PL and CE inhibition by CaC hydrolysates compared to CwC. Potent hydrolysates (CwCP-3 h and CaCA-6 h) upon simulated gastrointestinal digestion (SGID) showed significant improvement in inhibition of both PL and CE. However, both the SGID hydrolysates showed similar extent of PL and CE inhibition and were further sequenced for peptide identification. Peptides MMML, FDML, HLPGRG from CwC and AAGF, MSNYF, FLWPEYGAL from CaC hydrolysates were predicted to be most active PL inhibitory peptides. Peptide LP found in both CwC and CaC hydrolysates was predicted as active CE inhibitor. Thus, CwC and CaC could be potential source of peptides with promising CE and PL inhibitory properties.


Assuntos
Caseínas , Esterol Esterase , Animais , Camelus , Bovinos , Digestão , Feminino , Hidrólise , Lipase , Peptídeos , Hidrolisados de Proteína , Esterol Esterase/genética
5.
Prostate ; 81(16): 1435-1449, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34553788

RESUMO

BACKGROUND: Benign prostatic hyperplasia (BPH) is one of the most common illnesses in aging men. Recent studies found that bone morphogenetic protein 5 (BMP5) is upregulated in BPH tissues, however, the role of BMP5 in the development of BPH has not been examined. The current study aims to elucidate the potential roles of BMP5 and related signaling pathways in BPH. METHODS: Human prostate cell lines (BPH-1, WPMY-1) and human/rat hyperplastic prostate tissues were utilized. Western blot, quantitative real-time polymerase chain reaction, immunofluorescent staining, and immunohistochemical staining were performed. BMP5-silenced and -overexpressed cell models were generated and then cell cycle progression, apoptosis, and proliferation were determined. The epithelial-mesenchymal transition (EMT) was also quantitated. And rescue experiments by BMP/Smad signaling pathway agonist or antagonist were accomplished. Moreover, BPH-related tissue microarray analysis was performed and associations between clinical parameters and expression of BMP5 were analyzed. RESULTS: Our study demonstrated that BMP5 was upregulated in human and rat hyperplastic tissues and localized both in the epithelial and stromal compartments of the prostate tissues. E-cadherin was downregulated in hyperplastic tissues, while N-cadherin and vimentin were upregulated. Overexpression of BMP5 enhanced cell proliferation and the EMT process via phosphorylation of Smad1/5/8, while knockdown of BMP5 induced cell cycle arrest at G0/G1 phase and blocked the EMT process. Moreover, a BMP/Smad signaling pathway agonist and antagonist reversed the effects of BMP5 silencing and overexpression, respectively. In addition, BMP5 expression positively correlated with prostate volume and total prostate-specific antigen. CONCLUSION: Our novel data suggest that BMP5 modulated cell proliferation and the EMT process through the BMP/Smad signaling pathway which could contribute to the development of BPH. However, further studies are required to determine the exact mechanism. Our study also indicated that BMP/Smad signaling may be rediscovered as a promising new therapeutic target for the treatment of BPH.


Assuntos
Proteína Morfogenética Óssea 5/metabolismo , Transição Epitelial-Mesenquimal/genética , Hiperplasia Prostática , Proteínas Smad/metabolismo , Animais , Apoptose , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Descoberta de Drogas , Técnicas de Silenciamento de Genes , Humanos , Masculino , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
6.
ACS Omega ; 5(43): 27811-27822, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33163764

RESUMO

In this work, a biogenic-mediated approach is successfully used to synthesize a novel heterogeneous Cs2O-MgO/MPC basic nanocomposite. For the first time, the established technicality employs pomegranate seed extract that gives a green capping fuel and reducing mediators during an aqueous solution combustion process of metal ion precursors. The synthesized nanocomposites were identified by X-ray diffraction, Fourier transform infrared, N2 isotherms, field emission scanning electron microscopy, and CO2-TPD analyses. The transesterification process of olive oil was used to evaluate the catalytic performance. The nanocomposite displayed outstanding catalytic efficiency stemming from the boosting of the reactant and product diffusion. The transesterification activity and the optimization design were assessed by applying the response surface methodology. Based on the experimental tests, the finest experimental conditions with a biodiesel yield of 96.1% are 4 h, 4% catalyst amount, an oil/methanol ratio of 1:15, and a temperature of 65 °C. The predicted optimal conditions based on the statistical model are 6 h contact time, 5.2 % catalyst dose, 65 °C reaction temperature, and 1:15 oil/methanol molar ratio, attaining a biodiesel yield of 95.18%. The catalyst reusability has been performed almost continuously up to four cycles, with no loss of the active constituents. The obtained biodiesel demonstrated characteristics close to those of international standards of biodiesel. Besides, the process employed in this study demonstrated significant potential for further development and commercialization and is cheaper than the refined vegetable oil used in traditional approaches of biodiesel manufacturing.

7.
Environ Geochem Health ; 41(6): 2533-2548, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31054073

RESUMO

Elemental composition of airborne dust samples retained by internal filters of air condition units (ACUs) was determined at 12 locations of Doha city, state of Qatar. Twenty-four elements: Al, Ca, Mg, Fe, Na, K, Ti, Zn, P, Sr, Mn, Ba, Cu, Cr, Ni, Pb, V, Mo, Li, Co, Sb, As, Cd, Be, were analysed by ICP-OES technique after acid digestion of the samples. The analysed components reflect 20.6% of the total sample mass. Similar or lower concentration values have been found for As, Cd, Cr, Cu, Mn, Ni, Pb, V, Zn, Al, and Fe compared to the international context of upper crust concentrations, NIST SRM (urban dust), published local dust information of outdoor, and surface terrestrial deposit (STD) counted for 7.2, 0.7, 91.8, 192.8, 369.7, 68.6, 65.3, 52.1, 824.3, 19,791, 20,508 mg/kg, respectively. The coefficient of correlation (p ≤ 0.05) showed significant association of ACUs dust elemental compositions with the main components of the local earth crust and surface deposits, ranging from the lowest 0.77 (Mg-Fe) to the highest 0.98 (Al-Fe), while Ni and V, typical anthropogenic pollutants, are also strongly correlated (0.86). These strong correlation relationships can be interpreted as the contribution of outdoor particulate to the indoor dust. Dendrogram of metal/Al ratios, based on Euclidean distance calculation and average linkage clustering method, distinguished three typical groups. Studying the enrichment factors of the three groups indicated elevated levels of Zn (131), Pb (49), Cu (32), Cd (8) and Ni (5) found indoors compared to the background composition of STD especially at locations in the industrial zone. The major elemental composition of the samples reflects the typical mineral composition of the local dust, while the trace composition demonstrates the influence of indoor sources. The collected ACU filter dust samples show significant contribution of outdoor mineral particles, non-exhaust traffic emission, industrial sources, as well as the influence of indoor activity such as smoking.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Metais/análise , Material Particulado/análise , Ar Condicionado/instrumentação , Cidades , Poeira/análise , Catar
8.
Environ Geochem Health ; 41(5): 2251-2263, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30919173

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) bound in dust retained in air-conditioning unit filters from 13 households in Greater Doha, Qatar, were quantified using GC-MS spectrometry. The median concentrations of ∑16PAH and ∑7PAH were 218.0 ng g-1 (± 125.3) and 112.1 ng g-1 (± 60.2) dry weight, respectively. Results show that except one sample, three- and four-benzene-ring PAHs were dominant in all dust samples. Phenanthrene, anthracene, pyrene, benzene(a)anthracene, and chrysene were dominant in 12 samples with maximum concentrations of 69.7 ng g-1 (± 24.0), 92.9 ng g-1 (± 28.1), 60.4 ng g-1 (± 14.7), 38.6 ng g-1 (± 7.3), and 14.7 ng g-1 (± 3.5), respectively. Benzo(k)fluoranthene has the most abundance of the quantified PAHs in the dust samples accounting for 19% of the total PAHs. Although Kriging interpolation shows a spatial variation of PAHs from north to south of Greater Doha, the mean concentrations in both directions were statically insignificant. Five samples displayed levels of benzo(a)pyrene (BaP) with maximum and median concentrations at 110.8 ng g-1 and 49.9 (± 28.4) dry weight, respectively. Benzo(a)pyrene equivalent approach [Formula: see text] was applied to assess carcinogenic exposure, and the resulting values (1.3-116.4 ng g-1) indicate that the levels observed were below the values reported for other countries within the region. Estimated daily ingestion (EDI) rates of PAHs retained in ACU filters were assessed for five age-groups < 1, 1-2, 3-6, 11-16, and > 19 years and were 0.39 (± 0.1), 0.33 (± 0.1), 0.20 (± 0.02), 0.07 (± 0.02), and 0.05 (± 0.01) ng kg-1/day, respectively. Source apportionment estimate indicates PAHs bound in dust retained in ACU filters are originated from pyrogenic sources.


Assuntos
Poluentes Atmosféricos/análise , Poeira/análise , Exposição por Inalação/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Carcinógenos/análise , Monitoramento Ambiental/métodos , Humanos , Catar , Medição de Risco
9.
Food Chem ; 141(1): 148-52, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23768340

RESUMO

Lactoferrin (Lf), the main iron-binding protein of milk, has biological activities. We have evaluated the potential of camel milk lactoferrin for its ability to inhibit the proliferation of the colon cancer cell line, HCT-116, in vitro, DNA damage and its antioxidant activities for the first time. The antioxidant capacity of Lf was evaluated by different assays, including ferric-reducing/antioxidant power assay (FRAP), free radical-scavenging activity (DPPH), nitric oxide (NO) radical-scavenging assay, total antioxidant activity and DNA damage, compared with vitamin C and rutin.


Assuntos
Antioxidantes/farmacologia , Camelus , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/fisiopatologia , Dano ao DNA/efeitos dos fármacos , Lactoferrina/farmacologia , Leite/química , Animais , Antioxidantes/química , Neoplasias Colorretais/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células HCT116 , Humanos , Lactoferrina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA