Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 20(1): 14, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35027054

RESUMO

BACKGROUND: Infectious diseases of farmed and wild animals pose a recurrent threat to food security and human health. The macrophage, a key component of the innate immune system, is the first line of defence against many infectious agents and plays a major role in shaping the adaptive immune response. However, this phagocyte is a target and host for many pathogens. Understanding the molecular basis of interactions between macrophages and pathogens is therefore crucial for the development of effective strategies to combat important infectious diseases. RESULTS: We explored how porcine pluripotent stem cells (PSCs) can provide a limitless in vitro supply of genetically and experimentally tractable macrophages. Porcine PSC-derived macrophages (PSCdMs) exhibited molecular and functional characteristics of ex vivo primary macrophages and were productively infected by pig pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV), two of the most economically important and devastating viruses in pig farming. Moreover, porcine PSCdMs were readily amenable to genetic modification by CRISPR/Cas9 gene editing applied either in parental stem cells or directly in the macrophages by lentiviral vector transduction. CONCLUSIONS: We show that porcine PSCdMs exhibit key macrophage characteristics, including infection by a range of commercially relevant pig pathogens. In addition, genetic engineering of PSCs and PSCdMs affords new opportunities for functional analysis of macrophage biology in an important livestock species. PSCs and differentiated derivatives should therefore represent a useful and ethical experimental platform to investigate the genetic and molecular basis of host-pathogen interactions in pigs, and also have wider applications in livestock.


Assuntos
Vírus da Febre Suína Africana , Doenças Transmissíveis , Vírus da Febre Suína Africana/genética , Animais , Interações Hospedeiro-Patógeno/genética , Macrófagos , Células-Tronco , Suínos
2.
Artigo em Inglês | MEDLINE | ID: mdl-33014886

RESUMO

The obligate intracellular parasite, Toxoplasma gondii, is highly prevalent among livestock species. Although cattle are generally resistant to Toxoplasma strains circulating in Europe and North America, the underlying mechanisms are largely unknown. Here, we report that bovine bone marrow-derived macrophage (BMDM) pre-stimulated with interferon gamma (IFNγ) restricts intracellular Toxoplasma growth independently of nitric oxide. While Toxoplasma promoted the expression of genes associated with alternative macrophage activation and lipid metabolism, IFNγ abrogated parasite-induced transcriptional responses and promoted the expression of genes linked to the classical macrophage activation phenotype. Additionally, several chemokines, including CCL22, that are linked to parasite-induced activation of the Wnt/ß-catenin signaling were highly expressed in Toxoplasma-exposed naïve BMDMs. A chemical Wnt/ß-catenin signaling pathway antagonist (IWR-1-endo) significantly reduced intracellular parasite burden in naïve BMDMs, suggesting that Toxoplasma activates this pathway to evade bovine macrophage anti-parasitic responses. Congruently, intracellular burden of a mutant Toxoplasma strain (RHΔASP5) that does not secrete dense granule proteins into the host cell, which is an essential requirement for parasite-induced activation of the Wnt/ß-catenin pathway, was significantly reduced in naïve BMDMs. However, both the Wnt/ß-catenin antagonist and RHASPΔ5 did not abolish parasite burden differences in naïve and IFNγ-stimulated BMDMs. Finally, we observed that parasites infecting IFNγ-stimulated BMDMs largely express genes associated with the slow dividing bradyzoite stage. Overall, this study provides novel insights into bovine macrophage transcriptional response to Toxoplasma. It establishes a foundation for a mechanistic analysis IFNγ-induced bovine anti-Toxoplasma responses and the counteracting Toxoplasma survival strategies.


Assuntos
Toxoplasma , Animais , Bovinos , Europa (Continente) , Ativação de Macrófagos , Macrófagos , América do Norte
3.
Nat Commun ; 11(1): 5258, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067458

RESUMO

Macrophages play an essential role in the early immune response against Toxoplasma and are the cell type preferentially infected by the parasite in vivo. Interferon gamma (IFNγ) elicits a variety of anti-Toxoplasma activities in macrophages. Using a genome-wide CRISPR screen we identify 353 Toxoplasma genes that determine parasite fitness in naїve or IFNγ-activated murine macrophages, seven of which are further confirmed. We show that one of these genes encodes dense granule protein GRA45, which has a chaperone-like domain, is critical for correct localization of GRAs into the PVM and secretion of GRA effectors into the host cytoplasm. Parasites lacking GRA45 are more susceptible to IFNγ-mediated growth inhibition and have reduced virulence in mice. Together, we identify and characterize an important chaperone-like GRA in Toxoplasma and provide a resource for the community to further explore the function of Toxoplasma genes that determine fitness in IFNγ-activated macrophages.


Assuntos
Interferon gama/imunologia , Macrófagos/imunologia , Toxoplasma/genética , Toxoplasmose/imunologia , Animais , Feminino , Genoma de Protozoário , Interações Hospedeiro-Parasita , Humanos , Interferon gama/genética , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , Toxoplasmose/genética , Toxoplasmose/parasitologia , Virulência
4.
mBio ; 10(1)2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622189

RESUMO

Upon invasion of Lewis rat macrophages, Toxoplasma rapidly induces programmed cell death (pyroptosis), which prevents Toxoplasma replication, possibly explaining the resistance of the Lewis rat to Toxoplasma Using a chemical mutagenesis screen, we identified Toxoplasma mutants that no longer induced pyroptosis. Whole-genome sequencing led to the identification of three Toxoplasma parasitophorous vacuole-localized dense granule proteins, GRA35, GRA42, and GRA43, that are individually required for induction of Lewis rat macrophage pyroptosis. Macrophage infection with Δgra35, Δgra42, and Δgra43 parasites led to greatly reduced cell death rates and enhanced parasite replication. Lewis rat macrophages infected with parasites containing a single, double, or triple deletion of these GRAs showed similar levels of cell viability, suggesting that the three GRAs function in the same pathway. Deletion of GRA42 or GRA43 resulted in GRA35 (and other GRAs) being retained inside the parasitophorous vacuole instead of being localized to the parasitophorous vacuole membrane. Despite having greatly enhanced replication in Lewis rat macrophages in vitro, Δgra35, Δgra42, and Δgra43 parasites did not establish a chronic infection in Lewis rats. Toxoplasma did not induce F344 rat macrophage pyroptosis, but F344 rats infected with Δgra35, Δgra42, and Δgra43 parasites had reduced cyst numbers. Thus, these GRAs determined parasite in vivo fitness in F344 rats. Overall, our data suggest that these three Toxoplasma dense granule proteins play a critical role in establishing a chronic infection in vivo, independently of their role in mediating macrophage pyroptosis, likely due to their importance in regulating protein localization to the parasitophorous vacuole membrane.IMPORTANCE Inflammasomes are major components of the innate immune system and are responsible for detecting various microbial and environmental danger signals. Upon invasion of Lewis rat macrophages, the parasite rapidly activates the NLRP1 inflammasome, resulting in pyroptosis and elimination of the parasite's replication niche. The work reported here revealed that Toxoplasma GRA35, GRA42, and GRA43 are required for induction of Lewis rat macrophage pyroptosis. GRA42 and GRA43 mediate the correct localization of other GRAs, including GRA35, to the parasitophorous vacuole membrane. These three GRAs were also found to be important for parasite in vivo fitness in a Toxoplasma-susceptible rat strain, independently of their role in NLRP1 inflammasome activation, suggesting that they perform other important functions. Thus, this study identified three GRAs that mediate the induction of Lewis rat macrophage pyroptosis and are required for pathogenesis of the parasite.


Assuntos
Interações Hospedeiro-Patógeno , Macrófagos/imunologia , Macrófagos/parasitologia , Proteínas de Protozoários/metabolismo , Piroptose , Toxoplasma/imunologia , Animais , Sobrevivência Celular , Células Cultivadas , Análise Mutacional de DNA , Deleção de Genes , Mutagênese , Proteínas de Protozoários/genética , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew , Toxoplasma/genética , Sequenciamento Completo do Genoma
5.
J Wound Care ; 27(12): 885-890, 2018 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-30557106

RESUMO

OBJECTIVE: To assess the extra health-care costs and length of stay resulting from surgical site infection (SSI), as well as to identify the most frequent aetiological microorganisms of SSIs among Jordanian craniotomy surgery patients. METHOD: A retrospective, descriptive, correlational and nested 1:1 matched case-control design was used. A computerised list of patients, who underwent surgery between May 2009 and March 2015, was generated in the targeted hospital. A final bill for every selected patient was also determined. Patients were divided equally into two groups: patients with an SSI and patients without an SSI. RESULTS: A total of 64 patients were recruited. The SSI-group had a significant higher mean health-care cost of $7,899.08 (p=0.001) and a longer stay in hospital (mean additional days: 23.17) than the non-SSI group. Furthermore, Acinetobacter baumannii and Staphylococcus aureus were determined as the most predominant causative agents of SSI, at 39.1% and 26.1% of SSI patients, respectively. CONCLUSION: The results of this study can be considered as a baseline for national benchmarking to evaluate the quality of care provided to targeted patients. This study should encourage nurse administrators to adopt protocols and strategies that promote infection control measures, as well as to develop new methods of surveillance on universal precautions adherence. This may limit pathogen contamination in the surgical wound, shorten length of stay and decrease health-care costs.


Assuntos
Craniotomia/efeitos adversos , Custos de Cuidados de Saúde/estatística & dados numéricos , Tempo de Internação/economia , Infecção da Ferida Cirúrgica/etiologia , Infecção da Ferida Cirúrgica/terapia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Jordânia , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
6.
mBio ; 7(2): e02243, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26980837

RESUMO

UNLABELLED: Differences among individuals in susceptibility to infectious diseases can be modulated by host genetics. Much of the research in this field has aimed to identify loci within the host genome that are associated with these differences. In mice, A/J (AJ) and C57BL/6J (B6) mice show differential susceptibilities to various pathogens, including the intracellular pathogen Francisella tularensis. Because macrophages are the main initial target during F. tularensis infection, we explored early interactions of macrophages from these two mouse strains with F. tularensis as well as the genetic factors underlying these interactions. Our results indicate that bacterial interactions with bone marrow-derived macrophages (BMDMs) during early stages of infection are different in the AJ and B6 strains. During these early stages, bacteria are more numerous in B6 than in AJ macrophages and display differences in trafficking and early transcriptional response within these macrophages. To determine the genetic basis for these differences, we infected BMDMs isolated from recombinant inbred (RI) mice derived from reciprocal crosses between AJ and B6, and we followed early bacterial counts within these macrophages. Quantitative trait locus (QTL) analysis revealed a locus on chromosome 19 that is associated with early differences in bacterial counts in AJ versus B6 macrophages. QTL analysis of published data that measured the differential susceptibilities of the same RI mice to an in vivo challenge with F. tularensis confirmed the F. tularensis susceptibility QTL on chromosome 19. Overall, our results show that early interactions of macrophages with F. tularensis are dependent on the macrophage genetic background. IMPORTANCE: Francisella tularensis is a highly pathogenic bacterium with a very low infectious dose in humans. Some mechanisms of bacterial virulence have been elucidated, but the host genetic factors that contribute to host resistance or susceptibility are largely unknown. In this work, we have undertaken a genetic approach to assess what these factors are in mice. Analyzing early interactions of macrophages with the bacteria as well as data on overall susceptibility to infection revealed a locus on chromosome 19 that is associated with both phenotypes. In addition, our work revealed differences in the early macrophage response between macrophages with different genetic backgrounds. Overall, this work suggests some intriguing links between in vitro and in vivo infection models and should aid in further elucidating the genetic circuits behind the host response to Francisella tularensis infection.


Assuntos
Mapeamento Cromossômico , Francisella tularensis/imunologia , Macrófagos/imunologia , Locos de Características Quantitativas , Animais , Carga Bacteriana , Cruzamentos Genéticos , Francisella tularensis/isolamento & purificação , Macrófagos/microbiologia , Camundongos
7.
PLoS Genet ; 11(10): e1005619, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26510153

RESUMO

Macrophages display flexible activation states that range between pro-inflammatory (classical activation) and anti-inflammatory (alternative activation). These macrophage polarization states contribute to a variety of organismal phenotypes such as tissue remodeling and susceptibility to infectious and inflammatory diseases. Several macrophage- or immune-related genes have been shown to modulate infectious and inflammatory disease pathogenesis. However, the potential role that differences in macrophage activation phenotypes play in modulating differences in susceptibility to infectious and inflammatory disease is just emerging. We integrated transcriptional profiling and linkage analyses to determine the genetic basis for the differential murine macrophage response to inflammatory stimuli and to infection with the obligate intracellular parasite Toxoplasma gondii. We show that specific transcriptional programs, defined by distinct genomic loci, modulate macrophage activation phenotypes. In addition, we show that the difference between AJ and C57BL/6J macrophages in controlling Toxoplasma growth after stimulation with interferon gamma and tumor necrosis factor alpha mapped to chromosome 3, proximal to the Guanylate binding protein (Gbp) locus that is known to modulate the murine macrophage response to Toxoplasma. Using an shRNA-knockdown strategy, we show that the transcript levels of an RNA helicase, Ddx1, regulates strain differences in the amount of nitric oxide produced by macrophage after stimulation with interferon gamma and tumor necrosis factor. Our results provide a template for discovering candidate genes that modulate macrophage-mediated complex traits.


Assuntos
RNA Helicases DEAD-box/genética , Inflamação/genética , Ativação de Macrófagos/genética , Toxoplasmose/genética , Transcrição Gênica , Animais , Estudos de Associação Genética , Ligação Genética , Inflamação/microbiologia , Inflamação/patologia , Interferon gama/administração & dosagem , Interferon gama/genética , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Toxoplasma/patogenicidade , Toxoplasmose/microbiologia , Toxoplasmose/patologia , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/genética
8.
PLoS Pathog ; 10(3): e1003927, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24626226

RESUMO

Toxoplasma gondii is an intracellular parasite that infects a wide range of warm-blooded species. Rats vary in their susceptibility to this parasite. The Toxo1 locus conferring Toxoplasma resistance in rats was previously mapped to a region of chromosome 10 containing Nlrp1. This gene encodes an inflammasome sensor controlling macrophage sensitivity to anthrax lethal toxin (LT) induced rapid cell death (pyroptosis). We show here that rat strain differences in Toxoplasma infected macrophage sensitivity to pyroptosis, IL-1ß/IL-18 processing, and inhibition of parasite proliferation are perfectly correlated with NLRP1 sequence, while inversely correlated with sensitivity to anthrax LT-induced cell death. Using recombinant inbred rats, SNP analyses and whole transcriptome gene expression studies, we narrowed the candidate genes for control of Toxoplasma-mediated rat macrophage pyroptosis to four genes, one of which was Nlrp1. Knockdown of Nlrp1 in pyroptosis-sensitive macrophages resulted in higher parasite replication and protection from cell death. Reciprocally, overexpression of the NLRP1 variant from Toxoplasma-sensitive macrophages in pyroptosis-resistant cells led to sensitization of these resistant macrophages. Our findings reveal Toxoplasma as a novel activator of the NLRP1 inflammasome in rat macrophages.


Assuntos
Inflamassomos/imunologia , Macrófagos/parasitologia , Proteínas do Tecido Nervoso/imunologia , Toxoplasmose/imunologia , Animais , Western Blotting , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença/genética , Inflamassomos/genética , Macrófagos/imunologia , Proteínas do Tecido Nervoso/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Ratos , Ratos Endogâmicos , Toxoplasmose/genética , Transcriptoma
9.
Genome Res ; 24(3): 377-89, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24249727

RESUMO

Alternative splicing and mRNA editing are known to contribute to transcriptome diversity. Although alternative splicing is pervasive and contributes to a variety of pathologies, including cancer, the genetic context for individual differences in isoform usage is still evolving. Similarly, although mRNA editing is ubiquitous and associated with important biological processes such as intracellular viral replication and cancer development, individual variations in mRNA editing and the genetic transmissibility of mRNA editing are equivocal. Here, we have used linkage analysis to show that both mRNA editing and alternative splicing are regulated by the macrophage genetic background and environmental cues. We show that distinct loci, potentially harboring variable splice factors, regulate the splicing of multiple transcripts. Additionally, we show that individual genetic variability at the Apobec1 locus results in differential rates of C-to-U(T) editing in murine macrophages; with mouse strains expressing mostly a truncated alternative transcript isoform of Apobec1 exhibiting lower rates of editing. As a proof of concept, we have used linkage analysis to identify 36 high-confidence novel edited sites. These results provide a novel and complementary method that can be used to identify C-to-U editing sites in individuals segregating at specific loci and show that, beyond DNA sequence and structural changes, differential isoform usage and mRNA editing can contribute to intra-species genomic and phenotypic diversity.


Assuntos
Processamento Alternativo , Citidina Desaminase/genética , Macrófagos/metabolismo , Camundongos/genética , Edição de RNA , Desaminase APOBEC-1 , Animais , Citosina/metabolismo , Ligação Genética , Variação Genética , Genoma , Interferon gama/metabolismo , Macrófagos/parasitologia , Camundongos Endogâmicos C57BL , Locos de Características Quantitativas , Isoformas de RNA/genética , Toxoplasma/fisiologia , Uracila/metabolismo
10.
PLoS Pathog ; 9(12): e1003779, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367253

RESUMO

Most isolates of Toxoplasma from Europe and North America fall into one of three genetically distinct clonal lineages, the type I, II and III lineages. However, in South America these strains are rarely isolated and instead a great variety of other strains are found. T. gondii strains differ widely in a number of phenotypes in mice, such as virulence, persistence, oral infectivity, migratory capacity, induction of cytokine expression and modulation of host gene expression. The outcome of toxoplasmosis in patients is also variable and we hypothesize that, besides host and environmental factors, the genotype of the parasite strain plays a major role. The molecular basis for these differences in pathogenesis, especially in strains other than the clonal lineages, remains largely unexplored. Macrophages play an essential role in the early immune response against T. gondii and are also the cell type preferentially infected in vivo. To determine if non-canonical Toxoplasma strains have unique interactions with the host cell, we infected murine macrophages with 29 different Toxoplasma strains, representing global diversity, and used RNA-sequencing to determine host and parasite transcriptomes. We identified large differences between strains in the expression level of known parasite effectors and large chromosomal structural variation in some strains. We also identified novel strain-specifically regulated host pathways, including the regulation of the type I interferon response by some atypical strains. IFNß production by infected cells was associated with parasite killing, independent of interferon gamma activation, and dependent on endosomal Toll-like receptors in macrophages and the cytoplasmic receptor retinoic acid-inducible gene 1 (RIG-I) in fibroblasts.


Assuntos
Interações Hospedeiro-Parasita/genética , Macrófagos/metabolismo , Macrófagos/parasitologia , Toxoplasma/patogenicidade , Animais , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Família Multigênica , Transdução de Sinais/genética
11.
Infect Immun ; 81(6): 2156-67, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23545295

RESUMO

Toxoplasma gondii transmission between intermediate hosts is dependent on the ingestion of walled cysts formed during the chronic phase of infection. Immediately following consumption, the parasite must ensure survival of the host by preventing adverse inflammatory responses and/or by limiting its own replication. Since the Toxoplasma secreted effectors rhoptry 16 kinase (ROP16) and dense granule 15 (GRA15) activate the JAK-STAT3/6 and NF-κB signaling pathways, respectively, we explored whether a particular combination of these effectors impacted intestinal inflammation and parasite survival in vivo. Here we report that expression of the STAT-activating version of ROP16 in the type II strain (strain II+ROP16I) promotes host resistance to oral infection only in the context of endogenous GRA15 expression. Protection was characterized by a lower intestinal parasite burden and dampened inflammation. Host resistance to the II+ROP16I strain occurred independently of STAT6 and the T cell coinhibitory receptors B7-DC and B7-H1, two receptors that are upregulated by ROP16. In addition, coexpression of ROP16 and GRA15 enhanced parasite susceptibility within tumor necrosis factor alpha/gamma interferon-stimulated macrophages in a STAT3/6-independent manner. Transcriptional profiling of infected STAT3- and STAT6-deficient macrophages and parasitized Peyer's patches from mice orally challenged with strain II+ROP16I suggested that ROP16 activated STAT5 to modulate host gene expression. Consistent with this supposition, the ROP16 kinase induced the sustained phosphorylation and nuclear localization of STAT5 in Toxoplasma-infected cells. In summary, only the combined expression of both GRA15 and ROP16 promoted host resistance to acute oral infection, and Toxoplasma may possibly target the STAT5 signaling pathway to generate protective immunity in the gut.


Assuntos
Antígenos de Protozoários/metabolismo , Inflamação/patologia , Intestinos/patologia , Proteínas Tirosina Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Toxoplasmose Animal/parasitologia , Animais , Antígenos de Protozoários/genética , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Knockout , Nódulos Linfáticos Agregados/parasitologia , Proteínas Tirosina Quinases/genética , Proteínas de Protozoários/genética , Transdução de Sinais , Toxoplasmose Animal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA