Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38695909

RESUMO

Lignans are biologically active compounds widely distributed, recognized, and identified in seeds, fruits, and vegetables. Lignans have several intriguing bioactivities, including anti-inflammatory, antioxidant, and anticancer activities. Nrf2 controls the expression of many cytoprotective genes. Activation of Nrf2 is a promising therapeutic approach for treating and preventing diseases resulting from oxidative injury and inflammation. Lignans have been demonstrated to stimulate Nrf2 signaling in a variety of in vitro and experimental animal models. The review summarizes the findings of fourteen lignans (Schisandrin A, Schisandrin B, Schisandrian C, Magnolol, Honokiol, Sesamin, Sesamol, Sauchinone, Pinoresinol, Phyllanthin, Nectandrin B, Isoeucommin A, Arctigenin, Lariciresinol) as antioxidative and anti-inflammatory agents, affirming how Nrf2 activation affects their pharmacological effects. Therefore, lignans may offer therapeutic candidates for the treatment and prevention of various diseases and may contribute to the development of effective Nrf2 modulators.

2.
Mol Biol Rep ; 51(1): 660, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750264

RESUMO

BACKGROUND: Cadmium (Cd) is a heavy metal with extremely harmful toxic effects on the brain. Quetiapine (QTP) has unique neuroprotective effects with anti-inflammatory and antioxidant actions. However, its neuroprotective effect against Cd-induced neurotoxicity has not been previously studied. METHODS: QTP was administered in 10 and 20 mg/kg doses, while Cd was given in a dose of 6.5 mg/kg. RESULTS: In our study, QTP dose-dependently attenuated neuronal injury by downregulating p-tau and ß-amyloid. QTP potently attenuates histological abrasions induced by Cd. QTP counteracted oxidative injury by decreasing neuronal MDA and increased GSH levels mediated by downregulating Keap1 and upregulating Nrf2 and HO-1. QTP mitigated inflammation by decreasing MPO and NO2 and neuronal cytokines TNF-α and IL-1ß and upregulating IL-10 levels mediated by NF-κB downregulation. Additionally, QTP counteracted Cd-induced pyroptosis by downregulating caspase-1, ASC, and NLRP3 protein levels. CONCLUSION: In conclusion, QTP mitigates neurotoxicity induced by Cd through suppression of inflammation, pyroptosis, and oxidative stress by controlling the NF-κB, Keap1/Nrf2, and pyroptosis signals.


Assuntos
Cádmio , Inflamação , Estresse Oxidativo , Piroptose , Fumarato de Quetiapina , Estresse Oxidativo/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Animais , Cádmio/toxicidade , Fumarato de Quetiapina/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo
3.
Life Sci ; 347: 122642, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641047

RESUMO

Drug repurposing involves the investigation of existing drugs for new indications. It offers a great opportunity to quickly identify a new drug candidate at a lower cost than novel discovery and development. Despite the importance and potential role of drug repurposing, there is no specific definition that healthcare providers and the World Health Organization credit. Unfortunately, many similar and interchangeable concepts are being used in the literature, making it difficult to collect and analyze uniform data on repurposed drugs. This research was conducted based on understanding general criteria for drug repurposing, concentrating on liver diseases. Many drugs have been investigated for their effect on liver diseases even though they were originally approved (or on their way to being approved) for other diseases. Some of the hypotheses for drug repurposing were first captured from the literature and then processed further to test the hypothesis. Recently, with the revolution in bioinformatics techniques, scientists have started to use drug libraries and computer systems that can analyze hundreds of drugs to give a short list of candidates to be analyzed pharmacologically. However, this study revealed that drug repurposing is a potential aid that may help deal with liver diseases. It provides available or under-investigated drugs that could help treat hepatitis, liver cirrhosis, Wilson disease, liver cancer, and fatty liver. However, many further studies are needed to ensure the efficacy of these drugs on a large scale.


Assuntos
Reposicionamento de Medicamentos , Hepatopatias , Reposicionamento de Medicamentos/métodos , Humanos , Hepatopatias/tratamento farmacológico , Biologia Computacional/métodos , Descoberta de Drogas/métodos
4.
Int Immunopharmacol ; 132: 112011, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581991

RESUMO

Liver cancer (LC) is the sixth most common disease and the third most common cause of cancer-related mortality. The WHO predicts that more than 1 million deaths will occur from LC by 2030. Hepatocellular carcinoma (HCC) is a common form of primary LC. Today, the management of LC involves multiple disciplines, and multimodal therapy is typically selected on an individual basis, considering the intricate interactions between the patient's overall health, the stage of the tumor, and the degree of underlying liver disease. Currently, the treatment of cancers, including LC, has undergone a paradigm shift in the last ten years because of immuno-oncology. To treat HCC, immune therapy approaches have been developed to enhance or cause the body's natural immune response to specifically target tumor cells. In this context, immune checkpoint pathway inhibitors, engineered cytokines, adoptive cell therapy, immune cells modified with chimeric antigen receptors, and therapeutic cancer vaccines have advanced to clinical trials and offered new hope to cancer patients. The outcomes of these treatments are encouraging. Additionally, treatment using stem cells is a new approach for restoring deteriorated tissues because of their strong differentiation potential and capacity to release cytokines that encourage cell division and the formation of blood vessels. Although there is no proof that stem cell therapy works for many types of cancer, preclinical research on stem cells has shown promise in treating HCC. This review provides a recent update regarding the impact of immunotherapy and stem cells in HCC and promising outcomes.


Assuntos
Carcinoma Hepatocelular , Imunoterapia , Neoplasias Hepáticas , Transplante de Células-Tronco , Humanos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/imunologia , Imunoterapia/métodos , Animais , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/imunologia
5.
Drug Dev Res ; 85(2): e22166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424708

RESUMO

Hyperlipidemia is a common clinically encountered health condition worldwide that promotes the development and progression of cardiovascular diseases, including atherosclerosis. Berberine (BBR) is a natural product with acknowledged anti-inflammatory, antioxidant, and metabolic effects. This study evaluated the effect of BBR on lipid alterations, oxidative stress, and inflammatory response in rats with acute hyperlipidemia induced by poloxamer-407 (P-407). Rats were pretreated with BBR (25 and 50 mg/kg) for 14 days and acute hyperlipidemia was induced by a single dose of P-407 (500 mg/kg). BBR ameliorated hypercholesterolemia, hypertriglyceridemia, and plasma lipoproteins in P-407-adminsitered rats. Plasma lipoprotein lipase (LPL) activity was decreased, and hepatic 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase activity was enhanced in hyperlipidemic rats. The expression of low-density lipoprotein receptor (LDL-R) and ATP-binding cassette transporter 1 (ABCA1) was downregulated in hyperlipidemic rats. BBR enhanced LPL activity, upregulated LDL-R, and ABCA1, and suppressed HMG-CoA reductase in P-407-administered rats. Pretreatment with BBR ameliorated lipid peroxidation, nitric oxide (NO), pro-inflammatory mediators (interleukin [IL]-6, IL-1ß, tumor necrosis factor [TNF]-α, interferon-γ, IL-4 and IL-18) and enhanced antioxidants. In addition, BBR suppressed lymphocyte ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) and ecto-adenosine deaminase (E-ADA) as well as NO and TNF-α release by macrophages isolated from normal and hyperlipidemic rats. In silico investigations revealed the binding affinity of BBR toward LPL, HMG-CoA reductase, LDL-R, PSK9, ABCA1, and E-NTPDase. In conclusion, BBR effectively prevented acute hyperlipidemia and its associated inflammatory responses by modulating LPL, cholesterolgenesis, cytokine release, and lymphocyte E-NTPDase and E-ADA. Therefore, BBR is an effective and safe natural compound that might be employed as an adjuvant against hyperlipidemia and its associated inflammation.


Assuntos
Berberina , Hiperlipidemias , Ratos , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Hiperlipidemias/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/patologia , Estresse Oxidativo , Interleucina-6/metabolismo , Antioxidantes/uso terapêutico , Linfócitos/metabolismo , Linfócitos/patologia , Fator de Necrose Tumoral alfa/metabolismo , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Oxirredutases/uso terapêutico
6.
Drug Chem Toxicol ; : 1-12, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508707

RESUMO

Methotrexate (MTX) is an anti-folate chemotherapeutic commonly used to treat cancer and autoimmune diseases. Despite its widespread clinical use, MTX has been linked to serious neurotoxicity side effects. Vinpocetine (VNP) has been widely used clinically to treat many neurological conditions. This study was conducted to study the potential neuroprotective effects of VNP against MTX hippocampal intoxication in rats. Thirty-two rats were randomly allocated into 4 groups: (I) control (Vehicle); (II) VNP-treated group (20 mg/kg/day, p.o); (III) MTX-control (20 mg/kg/once, i.p.) group; and (IV) the VNP + MTX group. VNP was administered orally for 10 days, during which MTX was given intraperitoneally once at the end of day 5. Our data indicated that VNP administration significantly improved MTX-induced neuronal cell death, odema, vacuolation and degeneration. VNP attenuated oxidative injury mediated by significant upregulation of the Nrf2, HO-1, and GCLC genes, while the Keap-1 mRNA expression downregulated. Moreover, VNP suppressed cytokines release mediated by increasing IκB expression level while it caused a marked downregulation in NF-κB and AP-1 (C-FOS and C-JUN) levels. Additionally, VNP attenuated apoptosis by reducing hippocampal Bax levels while increasing Bcl2 levels in MTX-intoxicated rats. In conclusion, our results suggested that VNP significantly attenuated MTX hippocampal intoxication by regulating Keap-1/Nrf2, NF-κB/AP-1, and apoptosis signaling in these effects.

7.
Int Immunopharmacol ; 129: 111566, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38364740

RESUMO

Studies have identified Coenzyme Q10 (CoQ10) as a promising agent in improving idiopathic male infertility; however, its role in chemically or environmentally induced testicular dysfunction is not well-established. We investigated the potential of CoQ10 to attenuate methotrexate (MTX)-induced testicular damage and to identify molecular targets of CoQ10 effects. Wistar rats received a single intraperitoneal dose of 20 mg/kg MTX on the fifth day of the 10-day experimental protocol. 100 mg/kg CoQ10 was given orally daily for ten days, alone or combined with MTX. The testes of MTX-treated animals showed thickened tunica albuginea, distortion of seminiferous tubules with a marked reduction of germinal lining, a few primary spermatocytes with no spermatozoa, apoptotic cells, congested sub-capsular and interstitial blood vessels, and interstitial edema. Reduction of reproductive hormones and increased oxidative, inflammatory, and apoptotic biomarkers levels were also seen in the MTX-treated rats. CoQ10 + MTX-treated rats were protected against MTX-induced testicular histological changes and showed improvement in testosterone, luteinizing-, and follicle-stimulating hormone serum levels compared to the MTX group. The testes of the CoQ10 + MTX-treated rats showed reduced malondialdehyde, myloperoxidase, tumor necrosis factor -α, interleukin-6 and -1ß and Bax: Bcl2 ratio and enhanced glutathione, and catalase compared to MTX alone. CoQ10 enhanced MTX-induced downregulation of Nrf2 and PPAR-γ signaling and modulated its downstream targets, the inducible nitric oxide synthase, NF-κB, Bax, and Bcl2. In conclusion, CoQ10 targeted the Nrf2-PPAR-γ signaling loop and its downstream pathways, mitigating MTX-induced oxidative stress-related damages and alleviating the testicular dysfunction MTX caused. Our data suggest Nrf2-PPAR-γ signaling as a potential therapeutic target in testicular toxicity, where oxidative stress, inflammation, and apoptosis trigger damage.


Assuntos
Metotrexato , Doenças Testiculares , Ubiquinona/análogos & derivados , Humanos , Ratos , Masculino , Animais , Metotrexato/toxicidade , Ratos Wistar , Fator 2 Relacionado a NF-E2/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Proteína X Associada a bcl-2/metabolismo , Estresse Oxidativo , Doenças Testiculares/induzido quimicamente , Doenças Testiculares/tratamento farmacológico , Doenças Testiculares/prevenção & controle , Antioxidantes/farmacologia
8.
Life Sci ; 340: 122461, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286208

RESUMO

Heavy metals are ubiquitous environmental toxicants that have been known to have a serious effect on human and animal health. Aluminum (Al) is a widely distributed metal in nature. Al exposure has a detrimental impact on human fertility. This review focused on Al-induced male reproductive toxicity and the potential therapeutic approaches with some phytochemicals. Data from the literature showed that Al exposure is accompanied by a drastic decline in blood levels of FSH, LH, and testosterone, reduced sperm count, and affected sperm quality. Al exposure at high levels can cause oxidative stress by increasing ROS and RNS production, mediated mainly by downregulating Nrf2 signaling. Moreover, several investigations demonstrated that Al exposure evoked inflammation, evidenced by increased TNF-α and IL-6 levels. Additionally, substantial evidence concluded the key role of apoptosis in Al-induced testicular toxicity mediated by upregulating caspase-3 and downregulating Bcl2 protein. The damaging effects of Al on mitochondrial bioenergetics are thought to be due to the excessive generation of free radicals. This review helps to clarify the main mechanism involved in Al-associated testicular intoxication and the treatment strategy to attenuate the notable harmful effects on the male reproductive system. It will encourage clinical efforts to target the pathway involved in Al-associated testicular intoxication.


Assuntos
Alumínio , Sêmen , Animais , Masculino , Humanos , Alumínio/toxicidade , Sêmen/metabolismo , Testículo , Estresse Oxidativo , Antioxidantes/farmacologia , Intoxicação por Metais Pesados/metabolismo , Reprodução , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/metabolismo
9.
Immunopharmacol Immunotoxicol ; 46(1): 11-19, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37493389

RESUMO

OBJECTIVES: Methotrexate (MTX) is an antimetabolite agent widely used to manage a variety of tumors and autoimmune diseases. Nonetheless, MTX-induced intestinal intoxication is a serious adverse effect limiting its clinical utility. Inflammation and oxidative stress are possible mechanisms for MTX-induced intestinal toxicity. Vinpocetine (VNP) is a derivative of the alkaloid vincamine with potent anti-inflammatory and antioxidant effects. The current study investigated the protective intestinal impact of VNP in attenuating MTX-induced intestinal intoxication in rats. MATERIALS AND METHODS: VNP was administered orally in a dose of 20 mg/kg, while MTX was injected intraperitoneal in a dose of 20 mg/kg. RESULTS: VNP administration attenuated drastic histological changes induced by MTX and preserved both normal villus and crypt histology. VNP significantly attenuated oxidative injury by upregulating intestinal Nrf2 and HO-1 expression. VNP attenuated inflammation by reducing MPO, NO2-, TNF-α, and IL-1ß levels mediated by downregulating NF-κB, NDAPH-oxidase, IRF3, p-JAK-1, and p-STAT-3 expressions. Moreover, VNP potently counteracted intestinal necroptosis by effectively downregulating RIPK1, RIPK3, MLKL, and caspase-8 proteins. CONCLUSION: Therefore, VNP may represent a promising approach that can attenuate intestinal toxicity in patients receiving MTX.


Assuntos
Metotrexato , NF-kappa B , Alcaloides de Vinca , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Metotrexato/toxicidade , Estresse Oxidativo , Inflamação , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/farmacologia , Janus Quinase 1/metabolismo , Proteínas Quinases/metabolismo
10.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1405-1419, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37725153

RESUMO

Studies focusing on natural products have been conducted worldwide, and the results suggest that their natural ingredients effectively treat a wide range of illnesses. Baicalin (BIA) is a glycoside derived from the flavonoid baicalein present in Scutellaria baicalensis of the Lamiaceae family. Interestingly, BIA has been shown to protect the lungs in several animal models used in numerous studies. Therefore, we fully analyzed the data of the studies that focused on BIA's lung protective function against various injuries and included them in this review. Interestingly, BIA exhibits promising effects against acute lung injury, lung fibrosis, pulmonary embolism, and lung remodelling associated with COPD, LPS, and paraquat insecticide. BAI exhibits anticancer activity against lung cancer. Additionally, BIA potently attenuates lung damage associated with infections. BIA primarily exerts its therapeutic effects by suppressing inflammation, oxidative stress immune response, and apoptosis pathways. Nrf2/HO-1, PI3K/Akt, NF-κB, STAT3, MAPKs, TLR4, and NLRP3 are important targets in the pulmonary therapeutic effects of BIA on different lung disease models. Consequently, we recommend using it in future potential clinical applications, its contribution to treatment guidelines, and translating its promising effects to clinical practice in lung diseases.


Assuntos
Lesão Pulmonar Aguda , Fosfatidilinositol 3-Quinases , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , NF-kappa B/metabolismo , Pulmão , Lesão Pulmonar Aguda/metabolismo , Lipopolissacarídeos/farmacologia
11.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2335-2345, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37819390

RESUMO

Cadmium (Cd) is a hazardous heavy metal extensively employed in manufacturing polyvinyl chloride, batteries, and other industries. Acute lung injury has been directly connected to Cd exposure. Agomelatine (AGM), a melatonin analog, is a drug licensed for treating severe depression. This study evaluated the effect of AGM against Cd-induced lung injury in rats. AGM was administered in a dose of 25 mg/kg/day orally, while cadmium chloride (CdCl2) was injected intraperitoneally in a dose of 1.2 mg/kg to induce lung injury. Pre-treatment with AGM remarkably ameliorated Cd-induced lung histopathological abrasions. AGM decreased reactive oxygen species (ROS) production, lipid peroxidation, suppressed NDAPH oxidase, and boosted the antioxidants. AGM increased Nrf2, GCLC, HO-1, and TNXRD1 mRNA, as well as HO-1 activity and downregulated Keap1. AGM downregulated Bax and caspase-3 and upregulated Bcl-2, SIRT1, and FOXO3 expression levels in the lung. In conclusion, AGM has a protective effect against Cd-induced lung injury via its antioxidant and anti-apoptotic effects mediated via regulating Nrf2/HO-1 and SIRT1/FOXO3 signaling.


Assuntos
Lesão Pulmonar , Melatonina , Ratos , Animais , Cádmio , Fator 2 Relacionado a NF-E2/metabolismo , Melatonina/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Sirtuína 1/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Apoptose
12.
Artigo em Inglês | MEDLINE | ID: mdl-38060042

RESUMO

Methotrexate (MTX) is an inhibitor of folic acid reductase used in managing a variety of malignancies. Testicular injury by MTX is one of its serious adverse effects. The current investigation aims to assess the protective effects of diacerein (DIA) on testicular injury by MTX and clarify the possible underlying mechanisms. Testicular injury in rats was induced by a single injection of 20 mg/kg body weight of MTX. DIA was given in 25 mg/kg body weight/day and 50 mg/kg body weight/day doses for 10 days. Compared to the MTX group, DIA attenuated testicular intoxication as evidenced by improvement of testicular histopathological abnormalities and increased serum testosterone and luteinizing hormone. DIA attenuated testicular oxidative stress changes by lowering testicular MDA and boosting GSH content and SOD activity. Moreover, administration of DIA attenuated MTX-induced testicular inflammation, as proved by decreased TNF-α and IL-6. At the molecular level, DIA induced significant upregulation in Nrf2, HO-1, PPAR-γ, and cytoglobin protein expression. The present results proved that DIA, in a dose-dependent manner, exhibited notable amelioration of testicular toxicity induced by MTX through augmentation of anti-inflammatory and antioxidant effects combined by upregulating Nrf2/HO-1, PPAR-γ, and cytoglobin signaling.

13.
Artigo em Inglês | MEDLINE | ID: mdl-37943296

RESUMO

Mirtazapine (MTZ) is an antidepressant drug with an exceptional pharmacological profile. It also has an excellent safety and tolerability profile. The present review provides a pharmacological update on MTZ and summarizes the research findings of MTZ's effects on different diseases. MTZ is hypothesized to have antidepressant effects because of the synergy between noradrenergic and serotonergic actions and is effective in treating major depressive disorder and depression associated with epilepsy, Alzheimer's disease, stroke, cardiovascular disease, and respiratory disease. In cancer patients, MTZ significantly reduced sadness, nausea, sleep disruption, and pain and improved quality of life. Also, it has promising effects on Parkinson's disease, schizophrenia, dysthymia, social anxiety disorder, alcohol dependency, posttraumatic stress disorder, panic disorder, pain syndromes, obsessive-compulsive disorder, and sleep disorders. Additionally, MTZ is potentially therapeutic in different situations associated with depression, such as liver, kidney, cardiovascular, respiratory, infertility, heavy metal-induced neurotoxicity, and pruritus. Potent antioxidative, anti-inflammatory, and anti-apoptotic bioactivities mediate these promising effects. These positive outcomes of the scientific investigations motivate more and more clinical trials for a golden exceptional antidepressant in different conditions.

14.
Mol Biol Rep ; 50(12): 10471-10484, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37910384

RESUMO

Necroptosis, a type of programmed cell death that resembles necrosis, is now known to depend on a different molecular mechanism from apoptosis, according to several recent studies. Many efforts have reported the possible influence of necroptosis in human disorders and concluded the crucial role in the pathophysiology of various diseases, including liver diseases, renal injuries, cancers, and others. Fibrosis is the most common end-stage pathological cascade of several chronic inflammatory disorders. In this review, we explain the impact of necroptosis and fibrosis, for which necroptosis has been demonstrated to be a contributing factor. We also go over the inhibitors of necroptosis and how they have been applied to fibrosis models. This review helps to clarify the role of necroptosis in fibrosis and will encourage clinical efforts to target this pathway of programmed cell death.


Assuntos
Necroptose , Proteínas Quinases , Humanos , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose , Fibrose
15.
Saudi Pharm J ; 31(10): 101766, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37731943

RESUMO

Cisplatin (CIS) is a chemotherapeutic medication for the treatment of cancer. However, hepatotoxicity is among the adverse effects limiting its use. Caroxylon salicornicum is traditionally used for treating inflammatory diseases. In this investigation, three flavonoids, four coumarins, and three sterols were detected in the petroleum ether fraction of C. salicornicum (PEFCS). The isolated phytochemicals exhibited binding affinity toward Keap1, NF-κB, and SIRT1 in silico. The hepatoprotective role of PEFCS (100, 200 and 400 mg/kg) was investigated in vivo. Rats received PEFCS for 14 days and CIS on day 15. CIS increased ALT, AST and ALP and caused tissue injury along with increased ROS, MDA, and NO. Hepatic NF-κB p65, pro-inflammatory mediators, Bax and caspase-3 were increased in CIS-treated animals while antioxidants and Bcl-2 were decreased. PEFCS mitigated hepatocyte injury, and ameliorated transaminases, ALP, oxidative stress (OS) and inflammatory markers. PEFCS downregulated pro-apoptosis markers and boosted Bcl-2 and antioxidants. In addition, PEFCS upregulated Nrf2, HO-1, and SIRT1 in CIS-administered rats. In conclusion, PEFCS is rich in beneficial phytoconstituents and conferred protection against liver injury by attenuating OS and inflammation and upregulating Nrf2 and SIRT1.

16.
Food Chem Toxicol ; 180: 114055, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37739054

RESUMO

Cardiotoxicity is one of the hazardous effects of the exposure to the heavy metal cadmium (Cd). Inflammation and oxidative injury are implicated in the cardiotoxic mechanism of Cd. The melatonin receptor agonist agomelatine (AGM) showed promising effects against oxidative and inflammatory responses. This study evaluated the effect of AGM on Cd-induced cardiotoxicity in rats, pointing to its modulatory effect on TLR-4/NF-kB pathway and HSP70. Rats received AGM for 14 days and a single dose of Cd on day 7 and blood and heart samples were collected for analyses. Cd increased serum CK-MB, AST and LDH and caused cardiac tissue injury. Cardiac malondialdehyde (MDA), nitric oxide (NO) and MPO were elevated and GSH, SOD and GST decreased in Cd-administered rats. AGM ameliorated serum CK-MB, AST and LDH and cardiac MDA, NO and MPO, prevented tissue injury and enhanced antioxidants. AGM downregulated serum CRP and cardiac TLR-4, NF-kB, iNOS, IL-6, TNF-α and COX-2 in Cd-administered rats. HSP70 was upregulated in the heart of Cd-challenged rats treated with AGM. In silico findings revealed the binding affinity of AGM with TLR-4 and NF-kB. In conclusion, AGM protected against Cd cardiotoxicity by preventing myocardial injury and oxidative stress and modulating HSP70 and TLR-4/NF-kB pathway.

17.
Int Immunopharmacol ; 124(Pt A): 110833, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634447

RESUMO

Pancreatitis is a serious effect of the heavy metal cadmium (Cd) and inflammation and oxidative stress (OS) are implicated in Cd-induced pancreatic injury. This study evaluated the effect of the melatonin receptor agonist agomelatine (AGM) on Cd-induced acute pancreatitis (AP), pointing to its modulatory effect on inflammation, OS, and Nrf2/HO-1 pathway. Rats were supplemented with AGM orally for 14 days and a single injection of cadmium chloride (CdCl2) on day 7. Cd increased serum amylase and lipase and caused pancreatic endocrine and exocrine tissue injury. Malondialdehyde (MDA), nitric oxide (NO) and myeloperoxidase (MPO) were elevated, nuclear factor (NF)-kB p65, inducible NO synthase (iNOS), interleukin (IL)-6, tumor necrosis factor (TNF)-α and CD40 were upregulated, and antioxidants were decreased in the pancreas of Cd-administered rats. AGM ameliorated serum amylase and lipase and pancreatic OS, NF-kB p65, CD40, pro-inflammatory mediators and caspase-3, prevented tissue injury and enhanced antioxidants. AGM downregulated Keap1 and enhanced Nrf2 and HO-1 in the pancreas of Cd-administered rats. In silico findings revealed the binding affinity of AGM with Keap1, HO-1, CD40L and caspase-3. In conclusion, AGM protected against AP induced by Cd by preventing inflammation, OS and apoptosis and modulating Nrf2/HO-1 pathway.

18.
Toxicol Mech Methods ; 33(8): 675-687, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37403423

RESUMO

Cadmium (Cd) is one of the most hazardous metals to the environment and human health. Neurotoxicity is of the most serious hazards caused by Cd. Mirtazapine (MZP) is a central presynaptic α2 receptor antagonist used effectively in treating several neurological disorders. This study investigated the anti-inflammatory and antioxidant activity of MZP against Cd-induced neurotoxicity. In this study, rats were randomly divided into five groups: control, MZP (30 mg/kg), Cd (6.5 mg/kg/day; i.p), Cd + MZP (15 mg/kg), and Cd + MZP (30 mg/kg). Histopathological examination, oxidative stress biomarkers, inflammatory cytokines, and the impact of Nrf2 and NF-κB/TLR4 signals were assessed in our study. Compared to Cd control rats, MZP attenuated histological abrasions in the cerebral cortex and CA1 and CA3 regions of the hippocampus as well as the dentate gyrus. MZP attenuated oxidative injury by upregulating Nrf2. In addition, MZP suppressed the inflammatory response by decreasing TNF-α, IL-1ß, and IL-6 mediated by downregulating TLR4 and NF-κB. It is noteworthy that MZP's neuroprotective actions were dose-dependent. Collectively, MZP is a promising therapeutic strategy for attenuating Cd-induced neurotoxicity by regulating Nrf2, and NF-κB/TLR4 signals, pending further study in clinical settings.


Assuntos
Cádmio , NF-kappa B , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Cádmio/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptor 4 Toll-Like/metabolismo , Mirtazapina/uso terapêutico , Mirtazapina/farmacologia , Estresse Oxidativo
19.
Front Pharmacol ; 14: 1204641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397470

RESUMO

Background: Type 2 diabetes (T2D) is a metabolic disorder characterized by insulin resistance (IR) and hyperglycemia. Plants are valuable sources of therapeutic agents for the management of T2D. Euphorbia peplus has been widely used as a traditional medicine for the treatment of various diseases, but its beneficial role in T2D has not been fully explored. Methods: The anti-diabetic efficacy of E. peplus extract (EPE) was studied using rats with T2D induced by high-fat diet (HFD) and streptozotocin (STZ). The diabetic rats received 100, 200, and 400 mg/kg EPE for 4 weeks. Results: Phytochemical fractionation of the aerial parts of E. peplus led to the isolation of seven known flavonoids. Rats with T2D exhibited IR, impaired glucose tolerance, decreased liver hexokinase and glycogen, and upregulated glycogen phosphorylase, glucose-6-phosphatase (G-6-Pase), and fructose-1,6-bisphosphatase (F-1,6-BPase). Treatment with 100, 200, and 400 mg/kg EPE for 4 weeks ameliorated hyperglycemia, IR, liver glycogen, and the activities of carbohydrate-metabolizing enzymes. EPE attenuated dyslipidemia, serum transaminases, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and liver lipid accumulation, nuclear factor (NF)-κB p65, and lipid peroxidation, nitric oxide and enhanced antioxidants. All EPE doses upregulated serum adiponectin and liver peroxisome proliferator-activated receptor γ (PPARγ) in HFD/STZ-induced rats. The isolated flavonoids showed in silico binding affinity toward hexokinase, NF-κB, and PPARγ. Conclusion: E. peplus is rich in flavonoids, and its extract ameliorated IR, hyperglycemia, dyslipidemia, inflammation and redox imbalance, and upregulated adiponectin and PPARγ in rats with T2D.

20.
Environ Sci Pollut Res Int ; 30(33): 80181-80191, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37291353

RESUMO

Cisplatin (CIS) is an effective chemotherapy against different solid cancers. However, the adverse effects, including hepatotoxicity, limit its clinical use. 7-hydroxycoumarin (7-HC) possesses antioxidant and hepatoprotective activities, but its protective effect against CIS hepatotoxicity has not been investigated. This study evaluated the effect of 7-HC on liver injury, oxidative stress (OS), and inflammation provoked by CIS. Rats received 7-HC (25, 50, and 100 mg/kg) orally for 2 weeks followed by intraperitoneal injection of CIS (7 mg/kg) at day 15. CIS increased serum transaminases, alkaline phosphatase (ALP), and bilirubin and provoked tissue injury accompanied by elevated reactive oxygen species (ROS), malondialdehyde (MDA), and nitric oxide (NO). Liver nuclear factor (NF)-κB p65, inducible NO synthase (iNOS), pro-inflammatory cytokines, Bax, and caspase-3 were upregulated, and antioxidant defenses and Bcl-2 were decreased in CIS-treated rats, while 7-HC prevented liver injury and ameliorated OS, inflammatory and apoptosis markers. In addition, 7-HC enhanced nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase (HO)-1 in CIS-administered rats and in silico studies revealed its binding affinity toward HO-1. In conclusion, 7-HC protected against CIS hepatotoxicity by mitigating OS and inflammatory response and modulating Nrf2/HO-1 pathway.


Assuntos
Antioxidantes , Doença Hepática Crônica Induzida por Substâncias e Drogas , Ratos , Animais , Antioxidantes/metabolismo , Cisplatino/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Regulação para Cima , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Estresse Oxidativo , Inflamação/metabolismo , NF-kappa B/metabolismo , Umbeliferonas/farmacologia , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA