Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
EXCLI J ; 23: 862-882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983782

RESUMO

A major characteristic of cancer is dysregulated cell division, which results in aberrant growth of cells. Consequently, medicinal targets that prevent cell division would be useful in the fight against cancer. The primary regulator of proliferation is a complex consisting of cyclin and cyclin-dependent kinases (CDKs). The FDA has granted approval for CDK inhibitors (CDKIs) to treat metastatic hormone receptor-positive breast cancer. Specifically, CDK4/6 CDKIs block the enzyme activity of CDK4 and CDK6. Unfortunately, the majority of first-generation CDK inhibitors, also known as pan-CDK inhibitors because they target multiple CDKs, have not been authorized for clinical use owing to their serious side effects and lack of selection. In contrast to this, significant advancements have been created to permit the use of pan-CDK inhibitors in therapeutic settings. Notably, the toxicity and negative consequences of pan-CDK inhibitors have been lessened in recent years thanks to the emergence of combination therapy tactics. Therefore, pan-CDK inhibitors have renewed promise for clinical use when used in a combination regimen. The members of the CDK family have been reviewed and their primary roles in cell cycle regulation were covered in this review. Next, we provided an overview of the state of studies on CDK inhibitors.

2.
Sci Rep ; 14(1): 8464, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605215

RESUMO

Here, for the first time, we report synthesis of 1,10-phenanthroline-5,6-diimine (Phendiimine) based on an acid catalysed SN2 reaction of 1,10-phenanthroline-5,6-dione and 2-picolylamine in EtOH as a solvent. The synthesized Phendiimine molecule showed excellent photo-sensitivity against visible light, together with photoluminescence in both water and ethanol and also, it showed electrochemical activity with Fe electrode in ethanol and H2SO4 solution. Tauc plot also showed Phendiimine is a direct band-gap semiconductor. The hot-point probe test also showed that it is a n-type semiconductor. The UV-vis. absorption maximum shift in two solvents (water and ethanol) demonstrates the solvatochromism behavior of the molecule. The practical significance of this work and its guiding implication for future related research can be outlined as follows. Based on the results obtained, it appears that the Phendiimine molecule could revolutionize the medical field, potentially in the design of artificial eyes, increasing the yield of photovoltaic cells through enhanced heat transfer, improving computers and industrial photo-cooling systems, serving as photo-controller in place of piezoelectric devices, functioning as electronic opt couplers, controlling remote lasers, changing convection in photothermal heaters, designing miniaturized real photo-stimulated motors, creating photo or thermal switches through spin crossover complexes, developing electronic light-dependent resistance (LDR) devices, constructing X-ray and gamma-ray detectors, designing intelligent clothing, creating photo dynamic tumour therapy (PDT) complexes, singlet fission materials in solar cells and more.

3.
Cell Commun Signal ; 22(1): 56, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243252

RESUMO

Colorectal cancer is one of the most common causes of mortality worldwide. There are several potential risk factors responsible for the initiation and progression of colorectal cancer, including age, family history, a history of inflammatory bowel disease, and lifestyle factors such as physical activity and diet. For decades, there has been a vast amount of study on treatment approaches for colorectal cancer, which has led to conventional therapies such as chemotherapy, surgery, etc. Considering the high prevalence and incidence rate, scholars believe there is an urgent need for an alternative, more efficacious treatment with fewer adverse effects than the abovementioned treatments. Immunotherapy has emerged as a potential treatment alternative in a few years and has become one of the fastest-evolving therapeutic methods. Immunotherapy works by activating or enhancing the immune system's power to identify and attack cancerous cells. This review summarizes the most crucial new immunotherapy methods under investigation for colorectal cancer treatment, including Immune checkpoint inhibitors, CAR-T cell therapy, BiTEs, Tumor-infiltrating lymphocytes, and Oncolytic virus therapy. Furthermore, this study discusses the application of combination therapy, precision medicine, biomarker discovery, overcoming resistance, and immune-related adverse effects. Video Abstract.


Assuntos
Neoplasias Colorretais , Neoplasias , Vírus Oncolíticos , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Imunoterapia Adotiva , Neoplasias Colorretais/terapia , Linfócitos T , Neoplasias/terapia
4.
Cell Biol Int ; 47(6): 1033-1048, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36994843

RESUMO

Recently, mesenchymal stem/stromal cells (MSCs) transplantation has been introduced as a promising option to support cartilage structure and improve its function in preclinical models and patients suffering from osteoarthritis (OA). MSCs strongly provoke their preferred influence in vivo by inhibiting the inflammatory responses and applying immunomodulation by releasing anti-inflammatory mediators such as transforming growth factor-ß and interleukin-10. Such mediators downregulate fibroblast-like synoviocytes growth and migration, leading to chondroprotection. Furthermore, improving the chondrocyte proliferation and extracellular matrix hemostasis in addition to the suppression of the matrix metalloproteinases activities can support cartilage tissue organization. In this light, various published results have demonstrated that MSCs therapy can considerably decrease pain and restore knee function in OA patients. In the current review, we have concentrated on recent advances in MSCs-based therapeutics to elicit both chondrogenic and chondroprotective impacts in OA patients, focusing on the last decade in vivo results.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoartrite , Humanos , Cartilagem , Matriz Extracelular , Transplante de Células-Tronco Mesenquimais/métodos , Condrócitos
5.
N Am Spine Soc J ; 12: 100172, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36185342

RESUMO

Background: Occult infections in spinal pseudarthrosis revisions have been reported in the literature, but the relevance of such an infection on patient outcomes is unknown. We aimed to elucidate clinical outcomes and re-revision risks between patients with and without occult infections in spinal revision surgery for pseudarthrosis. Methods: In this matched case-control study, we identified 128 patients who underwent thoracolumbar revision surgery from 2014-2019 for pseudarthrosis of the spine. Among them, 13 (10.2%) revealed an occult infection (defined by at least two positive intraoperative tissue samples with the same pathogen), and nine of these 13 were available for follow-up. We selected 18 of the 115 controls using a 2:1 fuzzy matching based on fusion length and length of follow-up. The patients were followed up to assess subsequent re-revision surgeries and the following postoperative patient-reported outcome measures (PROMs): overall satisfaction, Oswestry Disability Index, 5-level EQ-5D, and Short Form 36. Results: Patient characteristics, surgical data, and length of follow-up were equal between both study groups. The rate of re-revision free survival after the initial pseudarthrosis revision surgery was higher in the occult infection group (77.8%) than the non-infectious controls (44.4%), although not significantly (0.22). The total number of re-revision surgeries, including re-re-revisions, was thirteen (in ten patients) in the control and two (in two patients) in the occult infection group (p = 0.08) after a median follow-up of 24 months (range 13-75). Four cases in the control group underwent re-revision for pseudarthrosis compared to none in the infected group. Satisfactory scores were recorded in all PROMs, with similar scores between the two groups. Conclusions: The presence of an occult infection accompanying spinal pseudarthrosis revision was not inferior to non-infected pseudarthrosis revisions in a matched, small sample size cohort study. This may be explained due to the possibility of targeted treatment of the identified cause of pseudarthrosis.

6.
Gene ; 844: 146829, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35995118

RESUMO

Ankylosing spondylitis (AS) is progressive immune-mediated arthritis. Persistent autoreactivity of T cells with an up-regulated Survivin expression is strongly implicated in AS immunopathogenesis. Besides, Survivin can inhibit proapoptotic caspase 9 activations. Moreover, microRNAs are small non-coding RNAs that are dysregulated in various diseases, in which their altered expression could modulate Survivin expression. The primary goal of this study was to assess the role of Survivin and its-targeting microRNAs in the immunopathogenesis of AS disease. For this aim, peripheral blood mononuclear cells (PBMCs) were isolated from 15 patients with AS and healthy matched controls using Ficoll-Hypaque. T cells were obtained using the magnetic-activated cell sorting (MACS) method. After that, the expression levels of Survivin, Caspase 9, and specific miRNAs were determined using qT-qPCR. Also, the expression of Survivin and Caspase 9 at protein levels was determined by western blotting. Then, the isolated T cells were co-cultured with interleukin (IL)-2 and muromonab-CD3 (OKT-3) for active-induced cell death (AICD) induction, Survivin siRNA for inhibition of Survivin expression, and their combination to assess the implication of Survivin expression in autoreactive T lymphocytes' resistance to apoptosis by determining the rate of apoptosis by Flowcytometry assay. The results showed that Survivin was up-regulated while Caspase 9 was downregulated in patients with AS. It was also revealed that microRNAs that directly or indirectly target the Survivin mRNA were dysregulated in patients with AS. It was also revealed that T cells obtained from AS patients were more resistant to apoptosis induction than those obtained from healthy people. In summary, the results obtained from this study showed that dysregulation of Survivin and Survivin-targeting miRNAs in T lymphocytes obtained from AS patients contribute to their resistance to apoptosis, suggesting the future development of targeted therapies for AS.


Assuntos
MicroRNAs , Espondilite Anquilosante , Apoptose , Caspase 9/metabolismo , Linhagem Celular Tumoral , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Leucócitos Mononucleares/metabolismo , MicroRNAs/metabolismo , Espondilite Anquilosante/genética , Espondilite Anquilosante/metabolismo , Survivina/genética , Survivina/metabolismo , Linfócitos T/metabolismo
7.
Biotechnol Appl Biochem ; 69(2): 822-839, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33786874

RESUMO

Mesenchymal stem cells (MSCs) are one of the most prominent cells in the bone marrow. MSCs can affect acute lymphocytic leukemia (ALL) cells under hypoxic conditions. With this aim, we used MOLT-4 cells as simulators of ALL cells cocultured with bone marrow mesenchymal stem cells (BMMSCs) under hypoxic conditions in vitro. Then, mRNA and protein expression of the MAT2A, PDK1, and HK2 genes were evaluated by real-time PCR and Western blot which was also followed by apoptosis measurement by a flow-cytometric method. Next, the methylation status of the target genes was investigated by MS-qPCR. Additionally, candidate gene expressions were examined after treatment with rapamycin using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. We found that the mRNA expression of the candidate genes was augmented under the hypoxic condition in which MAT2A was upregulated in cocultured cells compared to MOLT-4, while HK2 and PDK1 were downregulated. Moreover, we found an association between gene expression and promoter methylation levels of target genes. Besides, expressions of the candidate genes were decreased, while their methylation levels were promoted following treatment with rapamycin. Our results suggest an important role for the BMMSC in regulating the methylation of genes involved in cell survival in hypoxia conditions; however, we found no evidence to prove the MSCs' effect on directing malignant lymphoblastic cells to apoptosis.


Assuntos
Células-Tronco Mesenquimais , Leucemia-Linfoma Linfoblástico de Células Precursoras , Apoptose/genética , Células da Medula Óssea/metabolismo , Hipóxia Celular/genética , Humanos , Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Metionina Adenosiltransferase , Metilação , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , RNA Mensageiro/metabolismo , Sirolimo
8.
Curr Gene Ther ; 22(1): 23-39, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34238158

RESUMO

Recently, genetic engineering by various strategies to stimulate gene expression in a specific and controllable mode is a speedily growing therapeutic approach. Genetic modification of human stem or progenitor cells, such as Embryonic Stem Cells (ESCs), Neural Progenitor Cells (NPCs), Mesenchymal Stem/Stromal Cells (MSCs), and Hematopoietic Stem Cells (HSCs) for direct delivery of specific therapeutic molecules or genes has been evidenced as an opportune plan in the context of regenerative medicine due to their supported viability, proliferative features, and metabolic qualities. On the other hand, a large number of studies have investigated the efficacy of modified stem cells in cancer therapy using cells from various sources, disparate transfection means for gene delivery, different transfected yields, and wide variability of tumor models. Accordingly, cell-based gene therapy holds substantial aptitude for the treatment of human malignancy as it could relieve signs or even cure cancer succeeding expression of therapeutic or suicide transgene products; however, there exist inconsistent results in this regard. Herein, we deliver a brief overview of stem cell potential to use in cancer therapy and regenerative medicine and importantly discuss stem cells based gene delivery competencies to stimulate tissue repair and replacement in concomitant with their potential to use as an anti-cancer therapeutic strategy, focusing on the last two decades' in vivo studies.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Terapia Baseada em Transplante de Células e Tecidos , Genes Transgênicos Suicidas , Humanos , Células-Tronco Mesenquimais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Medicina Regenerativa/métodos
9.
Mol Biol Rep ; 49(1): 19-29, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34820749

RESUMO

BACKGROUND: The tumor necrosis factor (TNF)-related apoptosis-inducing ligand, TRAIL, an apoptosis-inducing cytokine, has attracted much attention in the treatment of cancer for its selective toxicity to malignant rather than normal cells. However, the apoptosis-inducing ability of TRAIL is weaker than expected primarily due to cancer cell resistance. As one of the dietary flavonoids, kaempferol, has been shown to be antiproliferative and might have a protective effect against TRAIL resistance, particularly for hematologic malignancies. METHODS AND RESULTS: Here, we studied the potential of kaempferol to enhance the TRAIL-induced cytotoxicity and apoptosis in human chronic myelogenous leukemia (CML) cell line K-562, as well as the expression of specific genes with impact on TRAIL signal regulation. Analysis of flowcytometry data showed that treatment with kaempferol did enhance sensitivity of CML cells to pro-apoptotic effects of anti-TRAIL antibody. Although the gene expression levels were heterogeneous, cFLIP, cIAP1 and cIAP2 expression were generally downregulated where co-treatment of kaempferol and TRAIL was employed and these effects appeared to be dose-dependent. We further demonstrated that the expression of death receptors 4 and 5 tended to increase subsequent to the combination treatment. CONCLUSIONS: Consequently, it is reasonable to conclude that sensitization of chronic leukemia cells to TRAIL by kaempferol in vitro should be considered as a way of focusing clinical attention on leukemia therapy.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Quempferóis/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteína 3 com Repetições IAP de Baculovírus/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/genética , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Ubiquitina-Proteína Ligases/genética
10.
Front Immunol ; 12: 699746, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489946

RESUMO

The immune cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted rapidly evolving attention as a cancer treatment modality because of its competence to selectively eliminate tumor cells without instigating toxicity in vivo. TRAIL has revealed encouraging promise in preclinical reports in animal models as a cancer treatment option; however, the foremost constraint of the TRAIL therapy is the advancement of TRAIL resistance through a myriad of mechanisms in tumor cells. Investigations have documented that improvement of the expression of anti-apoptotic proteins and survival or proliferation involved signaling pathways concurrently suppressing the expression of pro-apoptotic proteins along with down-regulation of expression of TRAILR1 and TRAILR2, also known as death receptor 4 and 5 (DR4/5) are reliable for tumor cells resistance to TRAIL. Therefore, it seems that the development of a therapeutic approach for overcoming TRAIL resistance is of paramount importance. Studies currently have shown that combined treatment with anti-tumor agents, ranging from synthetic agents to natural products, and TRAIL could result in induction of apoptosis in TRAIL-resistant cells. Also, human mesenchymal stem/stromal cells (MSCs) engineered to generate and deliver TRAIL can provide both targeted and continued delivery of this apoptosis-inducing cytokine. Similarly, nanoparticle (NPs)-based TRAIL delivery offers novel platforms to defeat barricades to TRAIL therapeutic delivery. In the current review, we will focus on underlying mechanisms contributed to inducing resistance to TRAIL in tumor cells, and also discuss recent findings concerning the therapeutic efficacy of combined treatment of TRAIL with other antitumor compounds, and also TRAIL-delivery using human MSCs and NPs to overcome tumor cells resistance to TRAIL.


Assuntos
Apoptose/fisiologia , Imunoterapia/métodos , Neoplasias/dietoterapia , Ligante Indutor de Apoptose Relacionado a TNF , Animais , Humanos , Neoplasias/imunologia
11.
Stem Cell Res Ther ; 12(1): 465, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34412685

RESUMO

Acute myeloid leukemia (AML) is a serious, life-threatening, and hardly curable hematological malignancy that affects the myeloid cell progenies and challenges patients of all ages but mostly occurs in adults. Although several therapies are available including chemotherapy, allogeneic hematopoietic stem cell transplantation (alloHSCT), and receptor-antagonist drugs, the 5-year survival of patients is quietly disappointing, less than 30%. alloHSCT is the major curative approach for AML with promising results but the treatment has severe adverse effects such as graft-versus-host disease (GVHD). Therefore, as an alternative, more efficient and less harmful immunotherapy-based approaches such as the adoptive transferring T cell therapy are in development for the treatment of AML. As such, chimeric antigen receptor (CAR) T cells are engineered T cells which have been developed in recent years as a breakthrough in cancer therapy. Interestingly, CAR T cells are effective against both solid tumors and hematological cancers such as AML. Gradually, CAR T cell therapy found its way into cancer therapy and was widely used for the treatment of hematologic malignancies with successful results particularly with somewhat better results in hematological cancer in comparison to solid tumors. The AML is generally fatal, therapy-resistant, and sometimes refractory disease with a disappointing low survival rate and weak prognosis. The 5-year survival rate for AML is only about 30%. However, the survival rate seems to be age-dependent. Novel CAR T cell therapy is a light at the end of the tunnel. The CD19 is an important target antigen in AML and lymphoma and the CAR T cells are engineered to target the CD19. In addition, a lot of research goes on the discovery of novel target antigens with therapeutic efficacy and utilizable for generating CAR T cells against various types of cancers. In recent years, many pieces of research on screening and identification of novel AML antigen targets with the goal of generation of effective anti-cancer CAR T cells have led to new therapies with strong cytotoxicity against cancerous cells and impressive clinical outcomes. Also, more recently, an improved version of CAR T cells which were called modified or smartly reprogrammed CAR T cells has been designed with less unwelcome effects, less toxicity against normal cells, more safety, more specificity, longer persistence, and proliferation capability. The purpose of this review is to discuss and explain the most recent advances in CAR T cell-based therapies targeting AML antigens and review the results of preclinical and clinical trials. Moreover, we will criticize the clinical challenges, side effects, and the different strategies for CAR T cell therapy.


Assuntos
Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia , Imunoterapia Adotiva , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos Quiméricos/genética , Linfócitos T
12.
J Transl Med ; 19(1): 302, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253242

RESUMO

Recently, mesenchymal stem/stromal cells (MSCs) due to their pro-angiogenic, anti-apoptotic, and immunoregulatory competencies along with fewer ethical issues are presented as a rational strategy for regenerative medicine. Current reports have signified that the pleiotropic effects of MSCs are not related to their differentiation potentials, but rather are exerted through the release of soluble paracrine molecules. Being nano-sized, non-toxic, biocompatible, barely immunogenic, and owning targeting capability and organotropism, exosomes are considered nanocarriers for their possible use in diagnosis and therapy. Exosomes convey functional molecules such as long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs), proteins (e.g., chemokine and cytokine), and lipids from MSCs to the target cells. They participate in intercellular interaction procedures and enable the repair of damaged or diseased tissues and organs. Findings have evidenced that exosomes alone are liable for the beneficial influences of MSCs in a myriad of experimental models, suggesting that MSC- exosomes can be utilized to establish a novel cell-free therapeutic strategy for the treatment of varied human disorders, encompassing myocardial infarction (MI), CNS-related disorders, musculoskeletal disorders (e.g. arthritis), kidney diseases, liver diseases, lung diseases, as well as cutaneous wounds. Importantly, compared with MSCs, MSC- exosomes serve more steady entities and reduced safety risks concerning the injection of live cells, such as microvasculature occlusion risk. In the current review, we will discuss the therapeutic potential of MSC- exosomes as an innovative approach in the context of regenerative medicine and highlight the recent knowledge on MSC- exosomes in translational medicine, focusing on in vivo researches.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Diferenciação Celular , Humanos , Medicina Regenerativa
13.
Front Cell Dev Biol ; 9: 686453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322483

RESUMO

Mesenchymal stem/stromal cell (MSC)-based therapy has become an attractive and advanced scientific research area in the context of cancer therapy. This interest is closely linked to the MSC-marked tropism for tumors, suggesting them as a rational and effective vehicle for drug delivery for both hematological and solid malignancies. Nonetheless, the therapeutic application of the MSCs in human tumors is still controversial because of the induction of several signaling pathways largely contributing to tumor progression and metastasis. In spite of some evidence supporting that MSCs may sustain cancer pathogenesis, increasing proofs have indicated the suppressive influences of MSCs on tumor cells. During the last years, a myriad of preclinical and some clinical studies have been carried out or are ongoing to address the safety and efficacy of the MSC-based delivery of therapeutic agents in diverse types of malignancies. A large number of studies have focused on the MSC application as delivery vehicles for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), chemotherapeutic drug such as gemcitabine (GCB), paclitaxel (PTX), and doxorubicin (DOX), prodrugs such as 5-fluorocytosine (5-FC) and ganciclovir (GCV), and immune cell-activating cytokines along with oncolytic virus. In the current review, we evaluate the latest findings rendering the potential of MSCs to be employed as potent gene/drug delivery vehicle for inducing tumor regression with a special focus on the in vivo reports performed during the last two decades.

14.
Front Immunol ; 12: 681984, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248965

RESUMO

Non-Hodgkin's lymphoma (NHL) is a cancer that starts in the lymphatic system. In NHL, the important part of the immune system, a type of white blood cells called lymphocytes become cancerous. NHL subtypes include marginal zone lymphoma, small lymphocytic lymphoma, follicular lymphoma (FL), and lymphoplasmacytic lymphoma. The disease can emerge in either aggressive or indolent form. 5-year survival duration after diagnosis is poor among patients with aggressive/relapsing form of NHL. Therefore, it is necessary to understand the molecular mechanisms of pathogenesis involved in NHL establishment and progression. In the next step, we can develop innovative therapies for NHL based on our knowledge in signaling pathways, surface antigens, and tumor milieu of NHL. In the recent few decades, several treatment solutions of NHL mainly based on targeted/directed therapies have been evaluated. These approaches include B-cell receptor (BCR) signaling inhibitors, immunomodulatory agents, monoclonal antibodies (mAbs), epigenetic modulators, Bcl-2 inhibitors, checkpoint inhibitors, and T-cell therapy. In recent years, methods based on T cell immunotherapy have been considered as a novel promising anti-cancer strategy in the treatment of various types of cancers, and particularly in blood cancers. These methods could significantly increase the capacity of the immune system to induce durable anti-cancer responses in patients with chemotherapy-resistant lymphoma. One of the promising therapy methods involved in the triumph of immunotherapy is the chimeric antigen receptor (CAR) T cells with dramatically improved killing activity against tumor cells. The CAR-T cell-based anti-cancer therapy targeting a pan-B-cell marker, CD19 is recently approved by the US Food and Drug Administration (FDA) for the treatment of chemotherapy-resistant B-cell NHL. In this review, we will discuss the structure, molecular mechanisms, results of clinical trials, and the toxicity of CAR-T cell-based therapies. Also, we will criticize the clinical aspects, the treatment considerations, and the challenges and possible drawbacks of the application of CAR-T cells in the treatment of NHL.


Assuntos
Imunoterapia Adotiva/métodos , Linfoma não Hodgkin/imunologia , Linfoma não Hodgkin/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Antígenos de Neoplasias/imunologia , Terapia Combinada , Gerenciamento Clínico , Suscetibilidade a Doenças , Engenharia Genética , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/tendências , Resultado do Tratamento
15.
Stem Cell Res Ther ; 12(1): 374, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215336

RESUMO

Adoptive cell therapy has received a great deal of interest in the treatment of advanced cancers that are resistant to traditional therapy. The tremendous success of chimeric antigen receptor (CAR)-engineered T (CAR-T) cells in the treatment of cancer, especially hematological cancers, has exposed CAR's potential. However, the toxicity and significant limitations of CAR-T cell immunotherapy prompted research into other immune cells as potential candidates for CAR engineering. NK cells are a major component of the innate immune system, especially for tumor immunosurveillance. They have a higher propensity for immunotherapy in hematologic malignancies because they can detect and eliminate cancerous cells more effectively. In comparison to CAR-T cells, CAR-NK cells can be prepared from allogeneic donors and are safer with a lower chance of cytokine release syndrome and graft-versus-host disease, as well as being a more efficient antitumor activity with high efficiency for off-the-shelf production. Moreover, CAR-NK cells may be modified to target various antigens while also increasing their expansion and survival in vivo. Extensive preclinical research has shown that NK cells can be effectively engineered to express CARs with substantial cytotoxic activity against both hematological and solid tumors, establishing evidence for potential clinical trials of CAR-NK cells. In this review, we discuss recent advances in CAR-NK cell engineering in a variety of hematological malignancies, as well as the main challenges that influence the outcomes of CAR-NK cell-based tumor immunotherapies.


Assuntos
Neoplasias Hematológicas , Receptores de Antígenos Quiméricos , Neoplasias Hematológicas/terapia , Humanos , Imunoterapia Adotiva , Células Matadoras Naturais , Receptores de Antígenos Quiméricos/genética , Linfócitos T
16.
Front Oncol ; 11: 673276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178661

RESUMO

The tumor microenvironment (TME) is greatly multifaceted and immune escape is an imperative attribute of tumors fostering tumor progression and metastasis. Based on reports, the restricted achievement attained by T cell immunotherapy reflects the prominence of emerging other innovative immunotherapeutics, in particular, natural killer (NK) cells-based treatments. Human NK cells act as the foremost innate immune effector cells against tumors and are vastly heterogeneous in the TME. Currently, there exists a rapidly evolving interest in the progress of chimeric antigen receptor (CAR)-engineered NK cells for tumor immunotherapy. CAR-NK cells superiorities over CAR-T cells in terms of better safety (e.g., absence or minimal cytokine release syndrome (CRS) and graft-versus-host disease (GVHD), engaging various mechanisms for stimulating cytotoxic function, and high feasibility for 'off-the-shelf' manufacturing. These effector cells could be modified to target various antigens, improve proliferation and persistence in vivo, upturn infiltration into tumors, and defeat resistant TME, which in turn, result in a desired anti-tumor response. More importantly, CAR-NK cells represent antigen receptors against tumor-associated antigens (TAAs), thereby redirecting the effector NK cells and supporting tumor-related immunosurveillance. In the current review, we focus on recent progress in the therapeutic competence of CAR-NK cells in solid tumors and offer a concise summary of the present hurdles affecting therapeutic outcomes of CAR-NK cell-based tumor immunotherapies.

17.
Stem Cell Res Ther ; 12(1): 297, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020704

RESUMO

Recently, mesenchymal stem/stromal cells (MSCs) and their widespread biomedical applications have attracted great consideration from the scientific community around the world. However, reports have shown that the main populations of the transplanted MSCs are trapped in the liver, spleen, and lung upon administration, highlighting the importance of the development of cell-free therapies. Concerning rising evidence suggesting that the beneficial effects of MSC therapy are closely linked to MSC-released components, predominantly MSC-derived exosomes, the development of an MSC-based cell-free approach is of paramount importance. The exosomes are nano-sized (30-100 nm) lipid bilayer membrane vesicles, which are typically released by MSCs and are found in different body fluids. They include various bioactive molecules, such as messenger RNA (mRNA), microRNAs, proteins, and bioactive lipids, thus showing pronounced therapeutic competence for tissues recovery through the maintenance of their endogenous stem cells, the enhancement of regenerative phenotypic traits, inhibition of apoptosis concomitant with immune modulation, and stimulation of the angiogenesis. Conversely, the specific roles of MSC exosomes in the treatment of various tumors remain challenging. The development and clinical application of novel MSC-based cell-free strategies can be supported by better understanding their mechanisms, classifying the subpopulation of exosomes, enhancing the conditions of cell culture and isolation, and increasing the production of exosomes along with engineering exosomes to deliver drugs and therapeutic molecules to the target sites. In the current review, we deliver a brief overview of MSC-derived exosome biogenesis, composition, and isolation methods and discuss recent investigation regarding the therapeutic potential of MSC exosomes in regenerative medicine accompanied by their double-edged sword role in cancer.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Neoplasias/terapia , Medicina Regenerativa
18.
Cancer Sci ; 112(9): 3427-3436, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34050690

RESUMO

Chimeric antigen receptors (CARs) have a unique facet of synthetic biology and offer a paradigm shift in personalized medicine as they can use and redirect the patient's immune cells to attack cancer cells. CAR-natural killer (NK) cells combine the targeted specificity of antigens with the subsequent intracellular signaling ability of the receptors to increase their anti-cancer functions. Importantly, CAR-NK cells can be utilized as universal cell-based therapy without requiring human leukocyte antigen (HLA) matching or earlier contact with tumor-associated antigens (TAAs). Indeed, CAR-NK cells can be adapted to recognize various antigens, hold higher proliferation capacity, and in vivo persistence, show improved infiltration into the tumors, and the ability to overcome the resistant tumor microenvironment leading to sustained cytotoxicity against tumors. Accumulating evidence from recent in vivo studies rendering CAR-NK cell anti-cancer competencies renewed the attention in the context of cancer immunotherapy, as these redirected effector cells can be used in the development of the "off-the-shelf" anti-cancer immunotherapeutic products. In the current review, we focus on the therapeutic efficacy of CAR-NK cell therapies for treating various human malignancies, including hematological malignancies and solid tumors, and will discuss the recent findings in this regard, with a special focus on animal studies.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Neoplasias Hematológicas/terapia , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Receptores de Antígenos Quiméricos/imunologia , Animais , Antígenos de Neoplasias/imunologia , Engenharia Genética/métodos , Vetores Genéticos , Humanos , Camundongos , Receptores de Antígenos Quiméricos/genética , Resultado do Tratamento , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Adv Pharm Bull ; 11(2): 335-342, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33880356

RESUMO

Purpose: Transfusion of red blood cells (RBCs) is a supportive and common treatment in surgical care, trauma, and anemia. However, in vivo production of RBC seems to be a suitable alternative for blood transfusions due to the limitation of blood resources, the possibility of disease transmission, immune reactions, and the presence of rare blood groups. Cell cultures require serum-free or culture media supplemented with highly expensive animal serum, which can transmit xenoviruses. Platelet lysate (PL) can be considered as a suitable alternative containing a high level of growth factors and a low production cost. Methods: Three-step culture media supplemented with PL or fetal bovine serum (FBS) were used for proliferation and differentiation of CD34+ umbilical cord blood stem cells to erythrocytes in co-culture with bone marrow mesenchymal stem cells (BM-MSCs). The cells were cultivated for 15 days and cell proliferation and expansion were assessed using cell counts at different days. Erythroid differentiation genes, CD71 and glycophorin A expression levels were evaluated. Results: Maximum hematopoietic stem cells (HSCs) proliferation was observed on day 15 in PL-containing medium (99±17×103-fold). Gene expression and surface markers showed higher differentiation of cells in PL-containing medium. Conclusion: The results of this study indicate that PL can enhance erythroid proliferation and differentiation of CD34+ HSCs. PL can also be used as a proper alternative for FBS in the culture medium and HSCs differentiation.

20.
Int J Dev Neurosci ; 81(4): 291-311, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33650716

RESUMO

Neurodegenerative disorders are a diversity of disorders, surrounding Alzheimer's (AD), Parkinson's (PD), Huntington's diseases (HD), and amyotrophic lateral sclerosis (ALS) accompanied by some other less common diseases generally characterized by either developed deterioration of central or peripheral nervous system structurally or functionally. Today, with the viewpoint of an increasingly aging society, the number of patients with neurodegenerative diseases and sociomedical burdens will spread intensely. During the last decade, stem cell technology has attracted great attention for treating neurodegenerative diseases worldwide because of its unique attributes. As acknowledged, there are several categories of stem cells being able to proliferate and differentiate into various cellular lineages, highlighting their significance in the context of regenerative medicine. In preclinical models, stem cell therapy using mesenchymal stem/stromal cells (MSCs), hematopoietic stem cells (HSCs), and neural progenitor or stem cells (NPCs or NSCs) along with pluripotent stem cells (PSCs)-derived neuronal cells could elicit desired therapeutic effects, enabling functional deficit rescue partially. Regardless of the noteworthy progress in our scientific awareness and understanding of stem cell biology, there still exist various challenges to defeat. In the present review, we provide a summary of the therapeutic potential of stem cells and discuss the current status and prospect of stem cell strategy in neurodegenerative diseases, in particular, AD, PD, ALS, and HD.


Assuntos
Células-Tronco Neurais , Doenças Neurodegenerativas/terapia , Células-Tronco Pluripotentes , Transplante de Células-Tronco/métodos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA