Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 9: 2693, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532752

RESUMO

Several lines of evidence have strongly implicated inflammatory processes in the pathobiology of major depressive disorder (MDD). However, the cellular origin of inflammatory signals and their specificity remain unclear. We examined the phenotype and glucocorticoid signaling in key cell populations of the innate immune system (monocytes) vs. adaptive immunity (T cells) in a sample of 35 well-characterized, antidepressant-free patients with MDD and 35 healthy controls individually matched for age, sex, smoking status and body mass index. Monocyte and T cell phenotype was assessed by flow cytometry. Cell-specific steroid signaling was determined by mRNA expression of pre-receptor regulation (11ß-hydroxysteroid dehydrogenase type 1; 11ß -HSD1), steroid receptor expression [glucocorticoid receptor (GR) and mineralocorticoid receptor (MR)], and the downstream target glucocorticoid-induced leucine-zipper (GILZ). We also collected salivary cortisol samples (8:00 a.m. and 10:00 p.m.) on two consecutive days. Patients showed a shift toward a pro-inflammatory phenotype characterized by higher frequency and higher absolute numbers of non-classical monocytes. No group differences were observed in major T cell subset frequencies and phenotype. Correspondingly, gene expression indicative of steroid resistance (i.e., lower expression of GR and GILZ) in patients with MDD was specific to monocytes and not observed in T cells. Monocyte phenotype and steroid receptor expression was not related to cortisol levels or serum levels of IL-6, IL-1ß, or TNF-α. Our results thus suggest that in MDD, cells of the innate and adaptive immune system are differentially affected with shifts in monocyte subsets and lower expression of steroid signaling related genes.


Assuntos
Transtorno Depressivo Maior/imunologia , Monócitos/imunologia , Transdução de Sinais/imunologia , Esteroides/imunologia , 11-beta-Hidroxiesteroide Desidrogenases/imunologia , Adolescente , Adulto , Transtorno Depressivo Maior/patologia , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/patologia , Receptores de Glucocorticoides/imunologia , Receptores de Mineralocorticoides/imunologia , Linfócitos T/imunologia , Fatores de Transcrição/imunologia
2.
EPMA J ; 7: 25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27904656

RESUMO

More than 80% of multiple sclerosis (MS) patients suffer from fatigue. Despite this, there are few therapeutic options and evidence-based pharmacological treatments are lacking. The associated societal burden is substantial (MS fatigue is a major reason for part-time employment or early retirement), and at least one out of four MS patients view fatigue as the most burdensome symptom of their disease. The mechanisms underlying MS-related fatigue are poorly understood, and objective criteria for distinguishing and evaluating levels of fatigue and tiredness have not yet been developed. A further complication is that both symptoms may also be unspecific indicators of many other diseases (including depression, sleep disorders, anemia, renal failure, liver diseases, chronic obstructive pulmonary disease, drug side effects, recent MS relapses, infections, nocturia, cancer, thyroid hypofunction, lack of physical exercise). This paper reviews current treatment options of MS-related fatigue in order to establish an individualized therapeutic strategy that factors in existing comorbid disorders. To ensure that such a strategy can also be easily and widely implemented, a comprehensive approach is needed, which ideally takes into account all other possible causes and which is moreover cost efficient. Using a diagnostic interview, depressive disorders, sleep disorders and side effects of the medication should be identified and addressed. All MS patients suffering from fatigue should fill out the Modified Fatigue Impact Scale, Epworth Sleepiness Scale, the Beck Depression Inventory (or a similar depression scale), and the Pittsburgh Sleep Quality Index (or the Insomnia Severity Index). In some patients, polygraphic or polysomnographic investigations should be performed. The treatment of underlying sleep disorders, drug therapy with alfacalcidol or fampridine, exercise therapy, and cognitive behavioral therapy-based interventions may be effective against MS-related fatigue. The objectives of this article are to identify the reasons for fatigue in patients suffering from multiple sclerosis and to introduce individually tailored treatment approaches. Moreover, this paper focuses on current knowledge about MS-related fatigue in relation to brain atrophy and lesions, cognition, disease course, and other findings in an attempt to identify future research directions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA