Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Periodontol ; 50(12): 1670-1684, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37667415

RESUMO

AIM: Antimicrobial-induced shifts in commensal oral microbiota can dysregulate helper T-cell oral immunity to affect osteoclast-osteoblast actions in alveolar bone. Antibiotic prophylaxis is commonly performed with dental implant placement surgery to prevent post-surgical complications. However, antibiotic prophylaxis effects on osteoimmune processes supporting dental implant osseointegration are unknown. The aim of the study was to discern the impact of antibiotic prophylaxis on dental implant placement surgery-induced osteoimmune wound healing and osseointegration. MATERIALS AND METHODS: We performed SHAM or dental implant placement surgery in mice. Groups were administered prophylactic antibiotics (amoxicillin or clindamycin) or vehicle. Gingival bacteriome was assessed via 16S sequencing. Helper T-cell oral immunity was evaluated by flow cytometry. Osteoclasts and osteoblasts were assessed via histomorphometry. Implant osseointegration was evaluated by micro-computed tomography. RESULTS: Dental implant placement surgery up-regulated TH 1, TH 2 and TREG cells in cervical lymph nodes (CLNs), which infers helper T-cell oral immunity contributes to dental implant placement osseous wound healing. Prophylactic antibiotics with dental implant placement surgery caused a bacterial dysbiosis, suppressed TH 1, TH 2 and TREG cells in CLNs, reduced osteoclasts and osteoblasts lining peri-implant alveolar bone, and attenuated the alveolar bone-implant interface. CONCLUSIONS: Antibiotic prophylaxis dysregulates dental implant placement surgery-induced osteoimmune wound healing and attenuates the alveolar bone-implant interface in mice.


Assuntos
Implantes Dentários , Animais , Camundongos , Antibioticoprofilaxia , Interface Osso-Implante , Microtomografia por Raio-X , Implantação Dentária Endóssea/métodos , Osseointegração/fisiologia , Cicatrização/fisiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
2.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499557

RESUMO

Prostate cancer poses an ongoing problem in the western world accounting for significant morbidity and mortality in the male population. Current therapy options are effective in treating most prostate cancer patients, but a significant number of patients progress beyond a manageable disease. For these patients, immunotherapy has emerged as a real option in the treatment of the late-stage metastatic disease. Unfortunately, even the most successful immunotherapy strategies have only led to a four-month increase in survival. One issue responsible for the shortcomings in cancer immunotherapy is the inability to stimulate helper CD4+ T cells via the HLA class II pathway to generate a potent antitumor response. Obstacles to proper HLA class II stimulation in prostate cancer vaccine design include the lack of detectable class II proteins in prostate tumors and the absence of defined class II specific prostate tumor antigens. Here, for the first time, we show that the insertion of a lysosomal thiol reductase (GILT) into prostate cancer cells directly enhances HLA class II antigen processing and results in increased CD4+ T cell activation by prostate cancer cells. We also show that GILT insertion does not alter the expression of prostate-specific membrane antigen (PSMA), an important target in prostate cancer vaccine strategies. Our study suggests that GILT expression enhances the presentation of the immunodominant PSMA459 epitope via the HLA class II pathway. Biochemical analysis showed that the PSMA459 peptide was cysteinylated under a normal physiologic concentration of cystine, and this cysteinylated form of PSMA459 inhibited T cell activation. Taken together, these results suggest that GILT has the potential to increase HLA class II Ag presentation and CD4+ T cell recognition of prostate cancer cells, and GILT-expressing prostate cancer cells could be used in designing cell therapy and/or vaccines against prostate cancer.


Assuntos
Vacinas Anticâncer , Neoplasias da Próstata , Humanos , Masculino , Linfócitos T , Próstata , Antígenos de Histocompatibilidade Classe II/metabolismo , Neoplasias da Próstata/metabolismo , Peptídeos/metabolismo , Linfócitos T CD4-Positivos , Apresentação de Antígeno
3.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162988

RESUMO

Melanoma is an aggressive skin cancer that has become increasingly prevalent in western populations. Current treatments such as surgery, chemotherapy, and high-dose radiation have had limited success, often failing to treat late stage, metastatic melanoma. Alternative strategies such as immunotherapies have been successful in treating a small percentage of patients with metastatic disease, although these treatments to date have not been proven to enhance overall survival. Several melanoma antigens (Ags) proposed as targets for immunotherapeutics include tyrosinase, NY-ESO-1, gp-100, and Mart-1, all of which contain both human leukocyte antigen (HLA) class I and class II-restricted epitopes necessary for immune recognition. We have previously shown that an enzyme, gamma-IFN-inducible lysosomal thiol-reductase (GILT), is abundantly expressed in professional Ag presenting cells (APCs), but absent or expressed at greatly reduced levels in many human melanomas. In the current study, we report that increased GILT expression generates a greater pool of antigenic peptides in melanoma cells for enhanced CD4+ T cell recognition. Our results suggest that the induction of GILT in human melanoma cells could aid in the development of a novel whole-cell vaccine for the enhancement of immune recognition of metastatic melanoma.


Assuntos
Melanoma , Compostos de Sulfidrila , Apresentação de Antígeno , Antígenos de Neoplasias , Antígenos HLA , Humanos , Lisossomos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peptídeos
4.
J Cell Biochem ; 122(10): 1534-1543, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34228377

RESUMO

We have recently demonstrated NFAT activating protein with ITAM motif 1 (NFAM1) signaling increases osteoclast (OCL) formation/bone resorption associated with the Paget's disease of bone, however, the underlying molecular mechanisms of the NFAM1 regulation of OCL differentiation and bone resorption remains unclear. Here, we showed that RANK ligand stimulation enhances NFAM1 expression in preosteoclast cells. Conditioned media collected from RANKL stimulated RAW264.7 NFAM1 knockdown (KD) stable cells showed inhibition of interleukin-6 (2.5-fold), tumour necrosis factor-α (2.2-fold) and CXCL-5 (3-fold) levels compared to wild-type (WT) cells. Further, RANKL stimulation significantly increased p-STAT6 expression (5.5-fold) in WT cells, but no significant effect was observed in NFAM1-KD cells. However, no changes were detected in signal transducer and activator of transcription 3 levels in either of cell groups. Interestingly, NFAM1-KD suppressed the RANKL stimulated c-fos, p-c-Jun and c-Jun N-terminal kinase (JNK) activity in preosteoclasts. We further showed that the suppression of JNK activity is through inhibition of p-SAPK/JNK in these cells. In addition, NFATc1 expression, a critical transcription factor associated with osteoclastogenesis is significantly inhibited in NFAM1-KD preosteoclast cells. Interestingly, NFAM1 inhibition suppressed the OCL differentiation and bone resorption capacity in mouse bone marrow cell cultures. We also demonstrated inhibition of tartrate-resistant acid phosphatase expression in RANKL stimulated NFAM1-KD preosteoclast cells. Thus, our results suggest that NFAM1 control SAPK/JNK signaling to modulate osteoclast differentiation and bone resorption.


Assuntos
Reabsorção Óssea/patologia , MAP Quinase Quinase 4/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Osteoclastos/citologia , Osteogênese , Animais , Reabsorção Óssea/metabolismo , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Fosforilação
5.
J Cell Physiol ; 235(2): 1663-1673, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31309556

RESUMO

Oral squamous cell carcinoma (OSCC) occurs as a malignancy of the oral cavity. RANK ligand (RANKL) is essential for osteoclast formation/bone resorption. Recently, we showed autoregulation of receptor activator of nuclear factor-κB ligand (RANKL) stimulates OSCC cell proliferation. OSCC cells show resistance to tumor necrosis factor related apoptosis inducing ligand (TRAIL) treatment. Therefore, we hypothesize that RANKL promotes resistance for TRAIL induction of OSCC apoptotic cell death. In this study, SCC14A and SCC74A cells cultured with TRAIL revealed high-level expression of RANKL which increased resistance to TRAIL inhibition of tumor cell proliferation. RANKL stimulation inhibited terminal deoxynucleotidyl transferase dUTP nick end labeling positive staining in TRAIL-treated cells. CRISPR/Cas-9 knockout of RANKL (RANKL-KO) increased caspase-9, caspase-3 activity and cytochrome c release in OSCC cells. RANKL inhibited proapoptotic proteins BAD and BAX expression. TRAIL treatment suppressed the SQSTM1/p62 and RANKL restored the expression. Interestingly, RANKL alone significantly increased proteasome activity. RANKL-KO in OSCC cells inhibited autophagic activity as evidenced by decreased light chain 3B-II and beclin-1 expression. Thus, RANKL stimulation of OSCC tumor cells triggered resistance for TRAIL-induced OSCC cell death. Taken together, blockade of RANKL may inhibit OSCC tumor progression and enhance the potential of TRAIL induced OSCC tumor cell apoptosis.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Ligante RANK/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Sistemas CRISPR-Cas , Caspase 1 , Morte Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Mitocôndrias/metabolismo , Neoplasias Bucais , Ligante RANK/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
6.
Am J Pathol ; 189(2): 370-390, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30660331

RESUMO

Commensal gut microbiota-host immune responses are experimentally delineated via gnotobiotic animal models or alternatively by antibiotic perturbation of gut microbiota. Osteoimmunology investigations in germ-free mice, revealing that gut microbiota immunomodulatory actions critically regulate physiologic skeletal development, highlight that antibiotic perturbation of gut microbiota may dysregulate normal osteoimmunological processes. We investigated the impact of antibiotic disruption of gut microbiota on osteoimmune response effects in postpubertal skeletal development. Sex-matched C57BL/6T mice were administered broad-spectrum antibiotics or vehicle-control from the age of 6 to 12 weeks. Antibiotic alterations in gut bacterial composition and skeletal morphology were sex dependent. Antibiotics did not influence osteoblastogenesis or endochondral bone formation, but notably enhanced osteoclastogenesis. Unchanged Tnf or Ccl3 expression in marrow and elevated tumor necrosis factor-α and chemokine (C-C motif) ligand 3 in serum indicated that the pro-osteoclastic effects of the antibiotics are driven by increased systemic inflammation. Antibiotic-induced broad changes in adaptive and innate immune cells in mesenteric lymph nodes and spleen demonstrated that the perturbation of gut microbiota drives a state of dysbiotic hyperimmune response at secondary lymphoid tissues draining local gut and systemic circulation. Antibiotics up-regulated the myeloid-derived suppressor cells, immature myeloid progenitor cells known for immunosuppressive properties in pathophysiologic inflammatory conditions. Myeloid-derived suppressor cell-mediated immunosuppression can be antigen specific. Therefore, antibiotic-induced broad suppression of major histocompatibility complex class II antigen presentation genes in bone marrow discerns that antibiotic perturbation of gut microbiota dysregulates critical osteoimmune cross talk.


Assuntos
Antibacterianos/efeitos adversos , Microbioma Gastrointestinal , Osteogênese , Maturidade Sexual , Animais , Antibacterianos/farmacologia , Quimiocina CCL3/imunologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Linfonodos/imunologia , Linfonodos/patologia , Masculino , Mesentério/imunologia , Mesentério/patologia , Camundongos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia , Osteoclastos/imunologia , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Osteogênese/imunologia , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/imunologia , Baço/imunologia , Baço/patologia , Fator de Necrose Tumoral alfa/imunologia
7.
J Cell Biochem ; 120(4): 6264-6276, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30378157

RESUMO

Though the current therapies are effective at clearing an early stage prostate cancer, they often fail to treat late-stage metastatic disease. We aimed to investigate the molecular mechanisms underlying the anticancer effects of a natural triterpenoid, ganoderic acid DM (GA-DM), on two human prostate cancer cell lines: the androgen-independent prostate carcinoma (PC-3), and androgen-sensitive prostate adenocarcinoma (LNCaP). Cell viability assay showed that GA-DM was relatively more toxic to LNCaP cells than to PC-3 cells (IC50 s ranged 45-55 µM for PC-3, and 20-25 µM for LNCaP), which may have occurred due to differential expression of p53. Hoechst DNA staining confirmed detectable nuclear fragmentation in both cell lines irrespective of the p53 status. GA-DM treatment decreased Bcl-2 proteins while it upregulated apoptotic Bax and autophagic Beclin-1, Atg5, and LC-3 molecules, and caused an induction of both early and late events of apoptotic cell death. Biochemical analyses of GA-DM-treated prostate cancer cells demonstrated that caspase-3 cleavage was notable in GA-DM-treated PC-3 cells. Interestingly, GA-DM treatment altered cell cycle progression in the S phase with a significant growth arrest in the G2 checkpoint and enhanced CD4 + T cell recognition of prostate tumor cells. Mechanistic study of GA-DM-treated prostate cancer cells further demonstrated that calpain activation and endoplasmic reticulum stress contributed to cell death. These findings suggest that GA-DM is a candidate for future drug design for prostate cancer as it activates multiple pathways of cell death and immune recognition.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Triterpenos/farmacologia , Calpaína/metabolismo , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Humanos , Masculino , Células PC-3 , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
8.
J Cell Physiol ; 233(8): 6125-6134, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29323724

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common malignancy among oral cancers and shows potent activity for local bone invasion. Receptor activator of nuclear factor κB (RANK) ligand (RANKL) is critical for bone-resorbing osteoclast formation. We previously demonstrated that OSCC tumor cells express high levels of RANKL. In this study, confocal microscopy demonstrated RANKL specific receptor, RANK expression in OSCC tumor cell lines (SCC1, SCC12, and SCC14a). We also confirmed the expression of RANK and RANKL in primary human OSCC tumor specimens. However, regulatory mechanisms of RANKL expression and a functional role in OSCC tumor progression are unclear. Interestingly, we identified that RANKL expression is autoregulated in OSCC tumor cells. The RANKL specific inhibitor osteoprotegerin (OPG) treatment to OSCC cells inhibits autoregulation of RANKL expression. Further, we showed conditioned media from RANKL CRISPR-Cas9 knockout OSCC cells significantly decreased osteoclast formation and bone resorption activity. In addition, RANKL increases OSCC tumor cell proliferation. RANKL treatment to OSCC cells demonstrated a dose-dependent increase in RANK intracellular adaptor protein, TRAF6 expression, and activation of IKK and IκB signaling molecules. We further identified that transcription factor NFATc2 mediates autoregulation of RANKL expression in OSCC cells. Thus, our results implicate RANKL autoregulation as a novel mechanism that facilitates OSCC tumor cell growth and osteoclast differentiation/bone destruction.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Homeostase/fisiologia , Neoplasias Bucais/metabolismo , Ligante RANK/metabolismo , Animais , Reabsorção Óssea/metabolismo , Osso e Ossos/efeitos dos fármacos , Sistemas CRISPR-Cas/fisiologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Osteoprotegerina/metabolismo , Transdução de Sinais/fisiologia , Fator 6 Associado a Receptor de TNF/metabolismo
9.
J Cell Biochem ; 119(2): 2212-2221, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28857256

RESUMO

Melanoma represents an ever-increasing problem in the western world as incidence rates continue to climb. Though manageable during early stages, late stage metastatic disease is highly resistant to current intervention. We have previously shown that gamma-interferon-inducible lysosomal thiol-reductase (GILT) enhances HLA class II antigen processing and immune detection of human melanoma cells. Here we report that GILT expression inhibits a potential target, paired box-3 (PAX-3) protein, in late stage human metastatic melanoma. We also show that GILT transfection or induction by IFN-γ, decreases PAX-3 protein expression while upregulating the expression of Daxx, which is also a repressor of PAX-3. Confocal microscopic analysis demonstrated that GILT co-localizes with PAX-3 protein, but not with Daxx within melanoma cells. Immunoprecipitation and immunoblotting studies suggest that GILT expression negatively regulates PAX-3 through the autophagy pathway, potentially resulting in increased susceptibility to conventional treatment in the form of chemotherapy or radiotherapy. While high-dose radiation is a common treatment for melanoma patients, our data suggest that GILT expression significantly increased the susceptibility of melanoma cells to low-dose radiation therapy via upregulation of tumor suppressor protein p53. Overall, these data suggest that GILT has multiple roles in inducing human melanoma cells as better targets for radiation and immunotherapy.


Assuntos
Melanoma/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Fator de Transcrição PAX3/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Linhagem Celular Tumoral , Proteínas Correpressoras , Regulação Neoplásica da Expressão Gênica , Humanos , Lisossomos/metabolismo , Melanoma/patologia , Melanoma/radioterapia , Chaperonas Moleculares , Estadiamento de Neoplasias , Proteínas Nucleares/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA