Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Physiol Sci ; 74(1): 32, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849720

RESUMO

We investigated whether calorie restriction (CR) enhances metabolic adaptations to endurance training (ET). Ten-week-old male Institute of Cancer Research (ICR) mice were fed ad libitum or subjected to 30% CR. The mice were subdivided into sedentary and ET groups. The ET group performed treadmill running (20-25 m/min, 30 min, 5 days/week) for 5 weeks. We found that CR decreased glycolytic enzyme activity and monocarboxylate transporter (MCT) 4 protein content, while enhancing glucose transporter 4 protein content in the plantaris and soleus muscles. Although ET and CR individually increased citrate synthase activity in the plantaris muscle, the ET-induced increase in respiratory chain complex I protein content was counteracted by CR. In the soleus muscle, mitochondrial enzyme activity and protein levels were increased by ET, but decreased by CR. It has been suggested that CR partially interferes with skeletal muscle adaptation to ET.


Assuntos
Restrição Calórica , Metabolismo Energético , Fígado , Transportadores de Ácidos Monocarboxílicos , Músculo Esquelético , Condicionamento Físico Animal , Animais , Músculo Esquelético/metabolismo , Masculino , Camundongos , Restrição Calórica/métodos , Fígado/metabolismo , Condicionamento Físico Animal/fisiologia , Metabolismo Energético/fisiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Camundongos Endogâmicos ICR , Treino Aeróbico/métodos , Transportador de Glucose Tipo 4/metabolismo , Adaptação Fisiológica/fisiologia , Citrato (si)-Sintase/metabolismo , Proteínas Musculares
2.
Med Sci Sports Exerc ; 55(2): 186-198, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36170569

RESUMO

PURPOSE: Estrogen deficiency or insufficiency can occur under several conditions, leading to negative health outcomes. To establish an effective countermeasure against estrogen loss, we investigated the effects of endurance training on ovariectomy (OVX)-induced metabolic disturbances. METHODS: Female Institute of Cancer Research mice underwent OVX or sham operations. On day 7 of recovery, the mice were randomized to remain either sedentary or undergo 5 wk of treadmill running (15-20 m·min -1 , 60 min, 5 d·wk -1 ). During week 5 of the training, all animals performed a treadmill running test (15 m·min -1 , 60 min). RESULTS: After the experimental period, OVX resulted in greater gains in body mass, fat mass, and triglyceride content in the gastrocnemius muscle. OVX enhanced phosphofructokinase activity in the plantaris muscle and decreased lactate dehydrogenase activity in the plantaris and soleus muscles. OVX decreased the protein content of NDUFB8, a mitochondrial respiratory chain subunit, but did not decrease other mitochondrial proteins or enzyme activities. Endurance training significantly enhanced mitochondrial enzyme activity and protein content in the skeletal muscles. Although OVX increased the respiratory exchange ratio during the treadmill running test, and postexercise blood lactate levels, endurance training normalized these parameters. CONCLUSIONS: The present findings suggest that endurance training is a viable strategy to counteract the negative metabolic consequences in hypoestrogenism.


Assuntos
Treino Aeróbico , Condicionamento Físico Animal , Animais , Feminino , Humanos , Camundongos , Estradiol , Estrogênios , Músculo Esquelético/metabolismo , Ovariectomia , Condicionamento Físico Animal/fisiologia , Triglicerídeos/metabolismo
3.
FASEB J ; 36(12): e22628, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36322028

RESUMO

Exercise training enhances oxidative capacity whereas detraining reduces mitochondrial content in skeletal muscle. The strategy to suppress the detraining-induced reduction of mitochondrial content has not been fully elucidated. As previous studies reported that branched-chain amino acid (BCAA) ingestion increased mitochondrial content in skeletal muscle, we evaluated whether BCAA supplementation could suppress the detraining-induced reduction of mitochondrial content. Six-week-old male Institute of Cancer Research (ICR) mice were randomly divided into four groups as follows: control (Con), endurance training (Tr), detraining (DeTr), and detraining with BCAA supplementation (DeTr + BCAA). Mice in Tr, DeTr, and DeTr + BCAA performed treadmill running exercises [20-30 m/min, 60 min, 5 times/week, 4 weeks]. Then, mice in DeTr and DeTr + BCAA were administered with water or BCAA [0.6 mg/g of body weight, twice daily] for 2 weeks of detraining. In whole skeletal muscle, mitochondrial enzyme activities and protein content were decreased after 2 weeks of detraining, but the reduction was suppressed by BCAA supplementation. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein content, a master regulator of mitochondrial biogenesis, was decreased by detraining irrespective of BCAA ingestion. Regarding mitochondrial degradation, BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), a mitophagy-related protein, was significantly higher in the Tr group than in the DeTr + BCAA group, but not different from in the DeTr group. With respect to mitochondrial quality, BCAA ingestion did not affect oxygen consumption rate (OCR) and reactive oxygen species (ROS) production in isolated mitochondria. Our findings suggest that BCAA ingestion suppresses the detraining-induced reduction of mitochondrial content partly through inhibiting mitophagy.


Assuntos
Aminoácidos de Cadeia Ramificada , Mitocôndrias , Masculino , Camundongos , Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Suplementos Nutricionais
4.
Physiol Rep ; 10(17): e15457, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36065874

RESUMO

The concept of lactate shuttle is widely accepted in exercise physiology. Lactate transport is mediated by monocarboxylate transporters (MCT), which enable cells to take up and release lactate. However, the role of lactate during exercise has not yet been fully elucidated. In this study, we investigated the effects of lactate transport inhibition on exercise capacity and metabolism in mice. Here, we demonstrated that MCT1 inhibition by α-cyano-4-hydroxycinnamate administration (4-CIN, 200 mg/g of body weight) reduced the treadmill running duration at 20 m/min. The administration of 4-CIN increased the blood lactate concentration immediately after exercise. With matched exercise duration, the muscle lactate concentration was higher while muscle glycogen content was lower in 4-CIN-administered mice. Further, we showed that MCT4 inhibition by bindarit administration (50 mg/kg of body weight) reduced the treadmill running duration at 40 m/min. Bindarit administration increased the muscle lactate but did not alter the blood lactate and glucose concentrations, as well as muscle glycogen content, immediately after exercise. A negative correlation was observed between exercise duration at 40 m/min and muscle lactate concentration immediately after exercise. Our results suggest that lactate transport via MCT1 and MCT4 plays a pivotal role in sustaining exercise.


Assuntos
Transportadores de Ácidos Monocarboxílicos , Simportadores , Animais , Peso Corporal , Tolerância ao Exercício , Glicogênio/metabolismo , Ácido Láctico/metabolismo , Camundongos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Simportadores/metabolismo
5.
J Physiol Sci ; 72(1): 14, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768774

RESUMO

This study investigated whether endurance training attenuates orchiectomy (ORX)-induced metabolic alterations. At 7 days of recovery after sham operation or ORX surgery, the mice were randomized to remain sedentary or undergo 5 weeks of treadmill running training (15-20 m/min, 60 min, 5 days/week). ORX decreased glycogen concentration in the gastrocnemius muscle, enhanced phosphofructokinase activity in the plantaris muscle, and decreased lactate dehydrogenase activity in the plantaris and soleus muscles. Mitochondrial enzyme activities and protein content in the plantaris and soleus muscles were also decreased after ORX, but preserved, in part, by endurance training. In the treadmill running test (15 m/min, 60 min) after 4 weeks of training, orchiectomized sedentary mice showed impaired exercise performance, which was restored by endurance training. Thus, endurance training could be a potential therapeutic strategy to prevent the hypoandrogenism-induced decline in muscle mitochondrial content and physical performance.


Assuntos
Treino Aeróbico , Condicionamento Físico Animal , Corrida , Animais , Glicogênio/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia
6.
FEBS Open Bio ; 11(10): 2836-2844, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34510821

RESUMO

Lactate is considered to be a signaling molecule that induces mitochondrial adaptation and muscle hypertrophy. The purpose of this study was to examine whether lactate administration attenuates denervation-induced loss of mitochondrial content and muscle mass. Eight-week-old male Institute of Cancer Research mice underwent unilateral sciatic nerve transection surgery. The contralateral hindlimb served as a sham-operated control. From the day of surgery, mice were injected intraperitoneally with PBS or sodium lactate (equivalent to 1 g·kg-1 body weight) once daily for 9 days. After 10 days of denervation, gastrocnemius muscle weight decreased to a similar extent in both the PBS- and lactate-injected groups. Denervation significantly decreased mitochondrial enzyme activity, protein content, and MCT4 protein content in the gastrocnemius muscle. However, lactate administration did not have any significant effects. The current observations suggest that daily lactate administration for 9 days does not affect denervation-induced loss of mitochondrial content and muscle mass.


Assuntos
Ácido Láctico , Denervação Muscular , Animais , Ácido Láctico/metabolismo , Masculino , Camundongos , Mitocôndrias , Músculo Esquelético/metabolismo , Nervo Isquiático/metabolismo
7.
Nutrients ; 13(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206627

RESUMO

We examined the effect of dietary carbohydrate intake on post-exercise glycogen recovery. Male Institute of Cancer Research (ICR) mice were fed moderate-carbohydrate chow (MCHO, 50%cal from carbohydrate) or high-carbohydrate chow (HCHO, 70%cal from carbohydrate) for 10 days. They then ran on a treadmill at 25 m/min for 60 min and administered an oral glucose solution (1.5 mg/g body weight). Compared to the MCHO group, the HCHO group showed significantly higher sodium-D-glucose co-transporter 1 protein levels in the brush border membrane fraction (p = 0.003) and the glucose transporter 2 level in the mucosa of jejunum (p = 0.004). At 30 min after the post-exercise glucose administration, the skeletal muscle and liver glycogen levels were not significantly different between the two diet groups. The blood glucose concentration from the portal vein (which is the entry site of nutrients from the gastrointestinal tract) was not significantly different between the groups at 15 min after the post-exercise glucose administration. There was no difference in the total or phosphorylated states of proteins related to glucose uptake and glycogen synthesis in skeletal muscle. Although the high-carbohydrate diet significantly increased glucose transporters in the jejunum, this adaptation stimulated neither glycogen recovery nor glucose absorption after the ingestion of post-exercise glucose.


Assuntos
Dieta da Carga de Carboidratos/métodos , Carboidratos da Dieta/farmacologia , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glicogênio/metabolismo , Músculo Esquelético/metabolismo , Animais , Glicemia/metabolismo , Glucose/administração & dosagem , Jejuno/efeitos dos fármacos , Masculino , Camundongos , Modelos Animais , Condicionamento Físico Animal/fisiologia
8.
J Physiol Biochem ; 77(3): 469-480, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33765231

RESUMO

To identify factors that influence post-exercise muscle glycogen repletion, we compared the glycogen recovery after level running with downhill running, an experimental model of impaired post-exercise glycogen recovery. Male Institute of Cancer Research (ICR) mice performed endurance level running (no inclination) or downhill running (-5° inclination) on a treadmill. In Experiment 1, to determine whether these two types of exercise resulted in different post-exercise glycogen repletion patterns, tissues were harvested immediately post-exercise or 2 days post-exercise. Compared to the control (sedentary) group, level running induced significant glycogen supercompensation in the soleus muscle at 2 days post-exercise (p = 0.002). Downhill running did not induce glycogen supercompensation. In Experiment 2, mice were orally administered glucose 1 day post-exercise; this induced glycogen supercompensation in soleus and plantaris muscle only in the level running group (soleus: p = 0.005, plantaris: p = 0.003). There were significant positive main effects of level running compared to downhill running on the plasma insulin (p = 0.017) and C-peptide concentration (p = 0.011). There was no difference in the glucose transporter 4 level or the phosphorylated states of proteins related to insulin signaling and metabolism in skeletal muscle. The level running group showed significantly higher hexokinase 2 (HK2) protein content in both soleus (p = 0.046) and plantaris muscles (p =0.044) at 1 day after exercise compared to the downhill running group. Our findings suggest that post-exercise skeletal muscle glycogen repletion might be partly influenced by plasma insulin and skeletal muscle HK2 protein levels.


Assuntos
Glicogênio/metabolismo , Hexoquinase/metabolismo , Insulina/sangue , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Esforço Físico , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR
9.
Neurosci Lett ; 633: 1-6, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27619538

RESUMO

Monocarboxylate transporter 2 (MCT2) is an important component of the lactate transport system in neurons of the adult brain. Purkinje cells in the cerebellum have been shown to have high levels of MCT2, suggesting that this protein has a key function in energy metabolism and neuronal activities in these cells. However, it is not known whether inhibition of lactate transport via MCT2 in the cerebellum affects motor performance. To address this question, we examined motor performance in mice following the inhibition of lactate transport via MCT2 in the cerebellum using α-cyano-4-hydroxycinnamate (4-CIN). 4-CIN or saline was injected into the subarachnoidal space of the cerebellum of mice and motor performance was analyzed by a rotarod test both before and after injection. 4-CIN injection reduced retention time in the rotarod test by approximately 80% at 1h post-injection compared with pre-injection. No effect was observed at 2h post-injection or in mice treated with the vehicle control. Because we observed that MCT2 plays an important role in motor performance, we next investigated the effects of acute exercise on MCT2 transcription and protein levels in mice sampled pre-exercise and at 0 and 5h after 2h of treadmill running. We found a significant increase in MCT2 mRNA levels, but not of protein levels, in the cerebellum at 5h after exercise. Our results indicate that lactate transport via MCT2 in the cerebellum may play an important role in motor performance and that exercise can increase MCT2 expression at the transcriptional level.


Assuntos
Cerebelo/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Atividade Motora , Condicionamento Físico Animal , Animais , Transporte Biológico , Córtex Cerebral/metabolismo , Ácidos Cumáricos/farmacologia , Ácido Láctico/metabolismo , Masculino , Camundongos Endogâmicos ICR , Transportadores de Ácidos Monocarboxílicos/genética , RNA Mensageiro/metabolismo , Simportadores/metabolismo
10.
Am J Vet Res ; 74(4): 642-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23531075

RESUMO

OBJECTIVE: To evaluate the effects of a single incremental exercise test (IET) on mRNA expression and protein content of monocarboxylate transporter (MCT) 1 and MCT4 in the gluteus medius muscle of Thoroughbreds. ANIMALS: 12 Thoroughbreds (6 males and 6 females; age, 3 to 4 years). PROCEDURES: Horses underwent an IET before and after 18 weeks of high-intensity exercise training (HIT). Horses were exercised at 90% of maximal oxygen consumption for 3 minutes during the initial 10 weeks of HIT and 110% of maximal oxygen consumption for 3 minutes during the last 8 weeks of HIT. Gluteus medius muscle biopsy specimens were obtained from horses before (baseline), immediately after, and at 3, 6, and 24 hours after the IET. RESULTS: Expression of MCT1 and MCT4 mRNA was upregulated at 3 and 6 hours after the IET in muscle specimens obtained from horses prior to HIT (untrained horses) and at 6 hours after the IET in muscle specimens obtained from horses after HIT (trained horses). For both untrained and trained horses, MCT1 and MCT4 protein contents were increased at 6 hours after the IET and did not differ at 24 hours after the IET, compared with those at baseline. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that a single IET resulted in transient increases in MCT1 and MCT4 mRNA expression and protein content in untrained and trained horses. These results may be important for the elucidation of exercise-induced alterations in lactate metabolism.


Assuntos
Regulação da Expressão Gênica/fisiologia , Cavalos/fisiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Feminino , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
11.
J Physiol ; 582(Pt 3): 1317-35, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17556391

RESUMO

We examined the controversial notion of whether lactate is directly oxidized by subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria obtained from red and white rat skeletal muscle. Respiratory control ratios were normal in SS and IMF mitochondria. At all concentrations (0.18-10 mm), and in all mitochondria, pyruvate oxidation greatly exceeded lactate oxidation, by 31- to 186-fold. Pyruvate and lactate oxidation were inhibited by alpha-cyano-4-hydroxycinnamate, while lactate oxidation was inhibited by oxamate. Excess pyruvate (10 mm) inhibited the oxidation of palmitate (1.8 mm) as well as lactate (1.8 mm). In contrast, excess lactate (10 mm) failed to inhibit the oxidation of either palmitate (1.8 mm) or pyruvate (1.8 mm). The cell-permeant adenosine analogue, AICAR, increased pyruvate oxidation; in contrast, lactate oxidation was not altered. The monocarboxylate transporters MCT1 and 4 were present on SS mitochondria, but not on IMF mitochondria, whereas, MCT2, a high-affinity pyruvate transporter, was present in both SS and IMF mitochondria. The lactate dehydrogenase (LDH) activity associated with SS and IMF mitochondria was 200- to 240-fold lower than in whole muscle. Addition of LDH increased the rate of lactate oxidation, but not pyruvate oxidation, in a dose-dependent manner, such that lactate oxidation approached the rates of pyruvate oxidation. Collectively, these studies indicate that direct mitochondrial oxidation of lactate (i.e. an intracellular lactate shuttle) does not occur within the matrix in either IMF or SS mitochondria obtained from red or white rat skeletal muscle, because of the very limited quantity of LDH within mitochondria.


Assuntos
L-Lactato Desidrogenase/metabolismo , Lactatos/metabolismo , Mitocôndrias Musculares/metabolismo , Fibras Musculares de Contração Rápida/fisiologia , Sarcolema/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Isoenzimas/metabolismo , Cinética , Masculino , Mitocôndrias Musculares/efeitos dos fármacos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Miofibrilas/fisiologia , Oxirredução , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley , Ribonucleotídeos/farmacologia
12.
Biochem Biophys Res Commun ; 323(1): 249-53, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15351729

RESUMO

Whether subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria contain monocarboxylate transporters (MCTs) is controversial. We have examined the presence of MCT1, 2, and 4 in highly purified SS and IMF mitochondria. These mitochondria were not contaminated with plasma membrane, sarcoplasmic reticulum or endosomal compartments, as the marker proteins for these sub-cellular compartments (Na+-K+-ATPase, Ca2+-ATPase, and the transferrin receptor) were not present in SS or IMF mitochondria. MCT1, MCT2, and MCT4 were all present at the plasma membrane. However, MCT1 and MCT4 were associated with SS mitochondria. In contrast, the IMF mitochondria were completely devoid of MCT1 and MCT4. However, MCT2 was associated with both SS and IMF mitochondria. These observations suggest that SS and IMF mitochondria have different capacities for metabolizing monocarboxylates. Thus, the controversy as to whether mitochondria can take up and oxidize lactate will need to take account of the different distribution of MCTs between SS and IMF mitochondria.


Assuntos
Mitocôndrias Musculares/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Animais , Transporte Biológico , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Cinética , Lactatos/química , Ácido Láctico/química , Proteínas de Membrana Transportadoras/química , Transportadores de Ácidos Monocarboxílicos/química , Proteínas Musculares/metabolismo , Músculos/metabolismo , Miofibrilas/metabolismo , Proteínas Oncogênicas/metabolismo , Oxigênio/química , Oxigênio/metabolismo , Isoformas de Proteínas , Ácido Pirúvico/química , Ratos , Ratos Sprague-Dawley , Receptores da Transferrina/metabolismo , Sarcolema/metabolismo , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA