Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
MAbs ; 12(1): 1739408, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32191151

RESUMO

Mesothelin (MSLN) is a cell surface glycoprotein overexpressed in several solid malignancies, including gastric, lung, mesothelioma, pancreatic and ovarian cancers. While several MSLN-targeting therapeutic approaches are in development, only limited efficacy has been achieved in patients. A potential shortcoming of several described antibody-based approaches is that they target the membrane distal region of MSLN and, additionally, are known to be handicapped by the high levels of circulating soluble MSLN in patients. We show here, using monoclonal antibodies (mAbs) targeting different MSLN-spanning epitopes, that the membrane-proximal region resulted in more efficient killing of MSLN-positive tumor cells in antibody-dependent cell-mediated cytotoxicity (ADCC) assays. Surprisingly, no augmented killing was observed in antibody-dependent cellular phagocytosis (ADCP) by mAbs targeting this membrane-proximal region. To further increase the ADCP potential, we, therefore, generated bispecific antibodies (bsAbs) coupling a high-affinity MSLN binding arm to a blocking CD47 arm. Here, targeting the membrane-proximal domain of MSLN demonstrated enhanced ADCP activity compared to membrane-distal domains when the bsAbs were used in in vitro phagocytosis killing assays. Importantly, the superior anti-tumor activity was also translated in xenograft tumor models. Furthermore, we show that the bsAb approach targeting the membrane-proximal epitope of MSLN optimized ADCC activity by augmenting FcγR-IIIA activation and enhanced ADCP via a more efficient blockade of the CD47/SIRPα axis.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Antineoplásicos/imunologia , Antígeno CD47/imunologia , Proteínas Ligadas por GPI/imunologia , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antineoplásicos/farmacologia , Epitopos/imunologia , Humanos , Imunoterapia/métodos , Mesotelina , Camundongos , Fagocitose/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
MAbs ; 11(2): 322-334, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30569825

RESUMO

CD19 is a B cell-specific receptor that regulates the threshold of B cell receptor (BCR)-mediated cell proliferation. A CD47xCD19 bispecific antibody (biAb) was generated to target and deplete B cells via multiple antibody-mediated mechanisms. Interestingly, the biAb, constructed of a CD19 binding arm and a CD47 binding arm, inhibited BCR-mediated B-cell proliferation with an effect even more potent than a CD19 monoclonal antibody (mAb). The inhibitory effect of the biAb was not attributable to CD47 binding because a monovalent or bivalent anti-CD47 mAb had no effect on B cell proliferation. Fluorescence resonance energy transfer analysis demonstrated that co-engaging CD19 and CD47 prevented CD19 clustering and its migration to BCR clusters, while only engaging CD19 (with a mAb) showed no impact on either CD19 clustering or migration. The lack of association between CD19 and the BCR resulted in decreased phosphorylation of CD19 upon BCR activation. Furthermore, the biAb differentially modulated BCR-induced gene expression compared to a CD19 mAb. Taken together, this unexpected role of CD47xCD19 co-ligation in inhibiting B cell proliferation illuminates a novel approach in which two B cell surface molecules can be tethered, to one another in order, which may provide a therapeutic benefit in settings of autoimmunity and B cell malignancies.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antígenos CD19/metabolismo , Linfócitos B/metabolismo , Antígeno CD47/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Ativação Linfocitária/efeitos dos fármacos
3.
Mol Cancer Ther ; 17(8): 1739-1751, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29743205

RESUMO

CD47, an ubiquitously expressed innate immune checkpoint receptor that serves as a universal "don't eat me" signal of phagocytosis, is often upregulated by hematologic and solid cancers to evade immune surveillance. Development of CD47-targeted modalities is hindered by the ubiquitous expression of the target, often leading to rapid drug elimination and hemotoxicity including anemia. To overcome such liabilities, we have developed a fully human bispecific antibody, NI-1701, designed to coengage CD47 and CD19 selectively on B cells. NI-1701 demonstrates favorable elimination kinetics with no deleterious effects seen on hematologic parameters following single or multiple administrations to nonhuman primates. Potent in vitro and in vivo activity is induced by NI-1701 to kill cancer cells across a plethora of B-cell malignancies and control tumor growth in xenograft mouse models. The mechanism affording maximal tumor growth inhibition by NI-1701 is dependent on the coengagement of CD47/CD19 on B cells inducing potent antibody-dependent cellular phagocytosis of the targeted cells. NI-1701-induced control of tumor growth in immunodeficient NOD/SCID mice was more effective than that achieved with the anti-CD20 targeted antibody, rituximab. Interestingly, a synergistic effect was seen when tumor-implanted mice were coadministered NI-1701 and rituximab leading to significantly improved tumor growth inhibition and regression in some animals. We describe herein, a novel bispecific antibody approach aimed at sensitizing B cells to become more readily phagocytosed and eliminated thus offering an alternative or adjunct therapeutic option to patients with B-cell malignancies refractory/resistant to anti-CD20-targeted therapy. Mol Cancer Ther; 17(8); 1739-51. ©2018 AACR.


Assuntos
Anticorpos Biespecíficos/genética , Leucemia/genética , Leucemia/terapia , Linfoma de Células B/genética , Linfoma de Células B/terapia , Animais , Antígenos CD19 , Antígeno CD47 , Humanos , Leucemia/patologia , Linfoma de Células B/patologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Eur J Immunol ; 46(11): 2629-2638, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510283

RESUMO

Increased expression of endogenous Toll-like receptor 4 (TLR4) ligands (e.g., Tenascin-C, S100A8/A9, citrullinated fibrinogen (cFb) immune complexes) has been observed in patients with rheumatoid arthritis (RA). However, their roles in RA pathogenesis are not well understood. Here, we investigated the expression kinetics and role of endogenous TLR4 ligands in the murine model of collagen-induced arthritis (CIA). Tenascin-C was upregulated in blood early in CIA, and correlated positively with the clinical score at day 56. Levels of S100A8/A9 increased starting from day 28, peaking at day 42, and correlated positively with joint inflammation. Levels of anti-cFb antibodies increased during the late phase of CIA and correlated positively with both joint inflammation and cartilage damage. Blockade of TLR4 activation at the time of the first TLR4 ligand upregulation prevented clinical and histological signs of arthritis. A TLR4-dependent role was also observed for Tenascin-C and cFb immune complexes in osteoclast differentiation in vitro. Taken together, our data suggests that the pathogenic contribution of TLR4 in promoting joint inflammation and bone erosion during CIA occurs via various TLR4 ligands arising at different stages of disease. The data also suggests that Blockade of TLR4 with monoclonal antibodies is a promising strategy in RA treatment.


Assuntos
Artrite Reumatoide/imunologia , Osso e Ossos/patologia , Calgranulina A/sangue , Tenascina/sangue , Receptor 4 Toll-Like/metabolismo , Animais , Complexo Antígeno-Anticorpo/sangue , Artrite Experimental/imunologia , Artrite Reumatoide/patologia , Artrite Reumatoide/fisiopatologia , Calgranulina A/genética , Diferenciação Celular , Colágeno , Modelos Animais de Doenças , Fibrinogênio/imunologia , Articulações/imunologia , Ligantes , Camundongos , Camundongos Endogâmicos DBA , Osteoclastos/metabolismo , Análise Espaço-Temporal , Tenascina/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
5.
MAbs ; 5(4): 555-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23751612

RESUMO

Fc-modified anti-human CD3ε monoclonal antibodies (mAbs) are in clinical development for the treatment of autoimmune diseases. These next generation mAbs have completed clinical trials in patients with type-1 diabetes and inflammatory bowel disease demonstrating a narrow therapeutic window. Lowered doses are ineffective, yet higher pharmacologically-active doses cause an undesirable level of adverse events. Thus, there is a critical need for a return to bench research to explore ways of improving clinical outcomes. Indeed, we recently reported that a short course of treatment affords synergy, providing long-term disease amelioration when combining anti-mouse CD3 and anti-mouse tumor necrosis factor mAbs in experimental arthritis. Such strategies may widen the window between risk and benefit; however, to more accurately assess experimentally the biology and pharmacology, reagents that mimic the current development candidates were required. Consequently, we engineered an Fc-modified anti-mouse CD3ε mAb, 2C11-Novi. Here, we report the functional characterization of 2C11-Novi demonstrating that it does not bind FcγR in vitro and elicits little cytokine release in vivo, while maintaining classical pharmacodynamic effects (CD3-TCR downregulation and T cell killing). Furthermore, we observed that oral administration of 2C11-Novi ameliorated progression of remitting-relapsing experimental autoimmune encephalitis in mice, significantly reducing the primary acute and subsequent relapse phase of the disease. With innovative approaches validated in two experimental models of human disease, 2C11-Novi represents a meaningful tool to conduct further mechanistic studies aiming at exploiting the immunoregulatory properties of Fc-modified anti-CD3 therapies via combination therapy using parenteral or oral routes of administration.


Assuntos
Anticorpos Monoclonais Murinos , Artrite Experimental , Complexo CD3/imunologia , Encefalomielite Autoimune Experimental , Engenharia de Proteínas , Animais , Anticorpos Monoclonais Murinos/genética , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Monoclonais Murinos/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Masculino , Camundongos , Receptores de IgG/imunologia
6.
Arthritis Rheum ; 64(10): 3189-98, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22508436

RESUMO

OBJECTIVE: The goal of rheumatoid arthritis (RA) treatment is to achieve clinical remission in order to limit structural damage and physical disability. To this end, recent emphasis has been placed on aggressive treatment early in the course of disease with drugs such as anti-tumor necrosis factor (anti-TNF) agents. As T cells are also thought to play an important role in the initiation of RA, we hypothesized that targeting both TNF and T cells would result in better outcomes. The aim of this study was to examine the efficacy of combined therapy with anti-CD3 and anti-TNF in experimental RA. METHODS: Two anti-mouse antibodies were developed as surrogate reagents for anti-TNF and anti-CD3 therapies. Collagen-induced arthritis (CIA) was induced in DBA/1 mice, and antibodies were injected intraperitoneally, either alone on in combination, at predetermined subtherapeutic doses. The frequency and number of pathogenic and regulatory CD4+ T cell subsets in the draining lymph nodes were determined in order to investigate the mechanisms of action. RESULTS: Strikingly, the combination of the two antibodies demonstrated a potent synergy in established CIA, with long-term inhibition of disease progression and protection from joint destruction. The results did not demonstrate any enhancement of CD25+FoxP3+ regulatory T cells, but a profound depletion of pathogenic T cells from the draining lymph nodes was associated with reduced numbers of T cells in the joints. CONCLUSION: A short course of combination therapy with anti-CD3 and anti-TNF efficiently depletes pathogenic T cells from the draining lymph nodes, reducing the numbers of T cells in the joints and affording long-lasting inhibition of established CIA.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Artrite Experimental/tratamento farmacológico , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Artrite Experimental/imunologia , Artrite Experimental/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Articulações/efeitos dos fármacos , Articulações/patologia , Camundongos , Camundongos Endogâmicos DBA , Resultado do Tratamento
7.
Neurosci Res ; 70(2): 172-82, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21354221

RESUMO

An increasing number of data involve immunoreceptors in brain development, synaptic plasticity and behavior. However it has yet to be determined whether these proteins in fact transmit an immunoreceptor-like signal in non-hematopoietic neuronal cells. The recruitment and activation of the Syk family tyrosine kinases, Syk and ZAP-70, being a critical step in this process, we conducted a thorough analysis of Syk/ZAP-70 expression pattern in nervous tissues. Syk/ZAP-70 is present in neurons of different structures including the cerebellum, the hippocampus, the visual system and the olfactory system. During the olfactory system ontogeny the protein is detected from the 16th embryonic day and persists in adulthood. Importantly, Syk was phosphorylated on tyrosine residues representative of an active form of the kinase in specialized neuronal subpopulations comprising rostral migratory stream neuronal progenitor cells, hippocampal pyramidal cells, retinal ganglion cells and cerebellar granular cells. Phospho-Syk staining was also observed in synapse-rich regions such as the olfactory bulb glomeruli and the retina inner plexiform layer. Furthermore, our work on cultured primary hippoccampal neurons indicates that as for hematopoietic cells, Syk phosphorylation is readily induced upon pervanadate treatment. Therefore, Syk appears to be a serious candidate in connecting immunoreceptors to downstream adaptor/effector molecules in neurons.


Assuntos
Encéfalo/enzimologia , Encéfalo/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/enzimologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Cerebelo/citologia , Cerebelo/embriologia , Cerebelo/enzimologia , Hipocampo/citologia , Hipocampo/embriologia , Hipocampo/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neurônios/citologia , Neurônios/metabolismo , Bulbo Olfatório/citologia , Bulbo Olfatório/embriologia , Bulbo Olfatório/enzimologia , Fosforilação/fisiologia , Proteínas Tirosina Quinases/biossíntese , Proteínas Tirosina Quinases/genética , Ratos , Ratos Wistar , Retina/citologia , Retina/embriologia , Retina/enzimologia , Organismos Livres de Patógenos Específicos , Células-Tronco/citologia , Células-Tronco/enzimologia , Células-Tronco/metabolismo , Quinase Syk , Proteína-Tirosina Quinase ZAP-70/biossíntese , Proteína-Tirosina Quinase ZAP-70/genética , Proteína-Tirosina Quinase ZAP-70/metabolismo
8.
J Immunol ; 185(9): 5512-21, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20870936

RESUMO

IL-6-mediated T cell-driven immune responses are associated with signaling occurring through the membrane-bound cognate receptor α-chain (mIL-6Rα). Once formed, IL-6-mIL-6Rα complexes induce the homodimerization and subsequent phosphorylation of the ubiquitously expressed signal-transducing protein, gp130. This signaling event is defined as classical IL-6 signaling. However, many inflammatory processes assigned to IL-6 may be mediated via binding a naturally occurring soluble IL-6Rα, which forms an agonistic complex (IL-6/soluble IL-6Rα) capable of evoking responses on a wide range of cell types that lack mIL-6Rα (IL-6 trans-signaling). To dissect the differential contribution of the two IL-6 signaling pathways in cell-mediated inflammatory processes, we pharmaceutically targeted each using two murine models of human arthritis. Whereas intra-articular neutralization of trans-signaling attenuated local inflammatory responses, the classical pathway was found to be obligate and sufficient to induce pathogenic T cells and humoral responses, leading to systemic disease. Our data illustrate that mechanisms occurring in the secondary lymphoid organs underlying arthropathies are mediated via the classical pathway of IL-6 signaling, whereas trans-signaling contributes only at the local site, that is, in the affected tissues.


Assuntos
Artrite Experimental/imunologia , Autoimunidade/imunologia , Interleucina-6/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Artrite Experimental/metabolismo , Separação Celular , Citocinas/biossíntese , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Expressão Gênica , Interleucina-6/metabolismo , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Receptores de Interleucina-6/imunologia , Receptores de Interleucina-6/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ressonância de Plasmônio de Superfície , Transfecção
9.
J Biol Chem ; 283(19): 13320-9, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18334483

RESUMO

Cannabinoids are potential agents for the development of therapeutic strategies against multiple sclerosis. Here we analyzed the role of the peripheral CB(2) cannabinoid receptor in the control of myeloid progenitor cell trafficking toward the inflamed spinal cord and their contribution to microglial activation in an animal model of multiple sclerosis (experimental autoimmune encephalomyelitis, EAE). CB(2) receptor knock-out mice showed an exacerbated clinical score of the disease when compared with their wild-type littermates, and this occurred in concert with extended axonal loss, T-lymphocyte (CD4(+)) infiltration, and microglial (CD11b(+)) activation. Immature bone marrow-derived CD34(+) myeloid progenitor cells, which play a role in neuroinflammatory pathologies, were shown to express CB(2) receptors and to be abundantly recruited toward the spinal cords of CB(2) knock-out EAE mice. Bone marrow-derived cell transfer experiments further evidenced the increased contribution of these cells to microglial replenishment in the spinal cords of CB(2)-deficient animals. In line with these observations, selective pharmacological CB(2) activation markedly reduced EAE symptoms, axonal loss, and microglial activation. CB(2) receptor manipulation altered the expression pattern of different chemokines (CCL2, CCL3, CCL5) and their receptors (CCR1, CCR2), thus providing a mechanistic explanation for its role in myeloid progenitor recruitment during neuroinflammation. These findings demonstrate the protective role of CB(2) receptors in EAE pathology; provide evidence for a new site of CB(2) receptor action, namely the targeting of myeloid progenitor trafficking and its contribution to microglial activation; and support the potential use of non-psychoactive CB(2) agonists in therapeutic strategies for multiple sclerosis and other neuroinflammatory disorders.


Assuntos
Movimento Celular , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Esclerose Múltipla/genética , Receptor CB2 de Canabinoide/deficiência , Receptor CB2 de Canabinoide/genética , Medula Espinal/citologia , Medula Espinal/metabolismo
10.
Glia ; 54(3): 160-71, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16817190

RESUMO

The interface between the blood and the cerebrospinal fluid (CSF) is formed by the choroid plexuses (CPs), which are specialized structures located within the brain ventricles. They are composed of a vascularized stroma surrounded by a tight epithelium that controls molecular and cellular traffic between the blood and the CSF. Cells expressing myeloid markers are present within the choroidal stroma. However, the exact identity, maturation state, and functions of these CP-associated myeloid cells are not fully clarified. We show here that this cell population contains immature myeloid progenitors displaying a high proliferative potential. Thus, in neonate rats and, to a lesser extent, in adult rats, cultured CP stroma cells form large colonies of macrophages, in response to M-CSF or GM-CSF, while, under the same conditions, peripheral blood monocytes do not. In addition, under GM-CSF treatment, free-floating colonies of CD11c(+) monocytic cells are generated which, when restimulated with GM-CSF and IL-4, differentiate into OX62(+)/MHC class II(+) dendritic cells. Interestingly, in CP stroma cultures, myeloid cells are found in close association with fibroblastic-like cells expressing the neural stem-cell marker nestin. Similarly, in the developing brain, macrophages and nestin(+) fibroblastic cells accumulate in vivo within the choroidal stroma. Taken together, these results suggest that the CP stroma represents a niche for myeloid progenitors and may serve as a reservoir for brain macrophages.


Assuntos
Plexo Corióideo/citologia , Células Dendríticas/citologia , Macrófagos/citologia , Células-Tronco/citologia , Animais , Animais Recém-Nascidos , Células da Medula Óssea/citologia , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Antígenos de Histocompatibilidade Classe II/fisiologia , Humanos , Interleucina-4/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Ratos , Células-Tronco/efeitos dos fármacos , Células Estromais/citologia
11.
Blood ; 107(2): 806-12, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16204309

RESUMO

The lack of draining lymphatic vessels in the central nervous system (CNS) contributes to the so-called "CNS immune privilege." However, despite such a unique anatomic feature, dendritic cells (DCs) are able to migrate from the CNS to cervical lymph nodes through a yet unknown pathway. In this report, labeled bone marrow-derived myeloid DCs were injected stereotaxically into the cerebrospinal fluid (CSF) or brain parenchyma of normal rats. We found that DCs injected within brain parenchyma migrate little from their site of injection and do not reach cervical lymph nodes. In contrast, intra-CSF-injected DCs either reach cervical lymph nodes or, for a minority of them, infiltrate the subventricular zone, where neural stem cells reside. Surprisingly, DCs that reach cervical lymph nodes preferentially target B-cell follicles rather than T-cell-rich areas. This report sheds a new light on the specific role exerted by CSF-infiltrating DCs in the control of CNS-targeted immune responses.


Assuntos
Linfócitos B/metabolismo , Encéfalo/imunologia , Movimento Celular/imunologia , Líquido Cefalorraquidiano/imunologia , Células Dendríticas/imunologia , Linfonodos/imunologia , Animais , Linfócitos B/imunologia , Medula Óssea/imunologia , Medula Óssea/metabolismo , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Feminino , Humanos , Injeções Intraventriculares , Camundongos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neurônios/citologia , Neurônios/imunologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia , Células-Tronco/imunologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA