Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(7): 1255-1271, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35679866

RESUMO

Osteoarthritis is a complex degenerative joint disease. Here, we investigate matched genotype and methylation profiles of primary chondrocytes from macroscopically intact (low-grade) and degraded (high-grade) osteoarthritis cartilage and from synoviocytes collected from 98 osteoarthritis-affected individuals undergoing knee replacement surgery. We perform an epigenome-wide association study of knee cartilage degeneration and report robustly replicating methylation markers, which reveal an etiologic mechanism linked to the migration of epithelial cells. Using machine learning, we derive methylation models of cartilage degeneration, which we validate with 82% accuracy in independent data. We report a genome-wide methylation quantitative trait locus (mQTL) map of articular cartilage and synovium and identify 18 disease-grade-specific mQTLs in osteoarthritis cartilage. We resolve osteoarthritis GWAS loci through causal inference and colocalization analyses and decipher the epigenetic mechanisms that mediate the effect of genotype on disease risk. Together, our findings provide enhanced insights into epigenetic mechanisms underlying osteoarthritis in primary tissues.


Assuntos
Cartilagem Articular , Osteoartrite , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Metilação de DNA/genética , Epigenoma , Humanos , Osteoartrite/genética , Osteoartrite/metabolismo
2.
Clin Orthop Relat Res ; 477(2): 297-309, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30794219

RESUMO

BACKGROUND: Periprosthetic osteolysis resulting in aseptic loosening is a leading cause of THA revision. Individuals vary in their susceptibility to osteolysis and heritable factors may contribute to this variation. However, the overall contribution that such variation makes to osteolysis risk is unknown. QUESTIONS/PURPOSES: We conducted two genome-wide association studies to (1) identify genetic risk loci associated with susceptibility to osteolysis; and (2) identify genetic risk loci associated with time to prosthesis revision for osteolysis. METHODS: The Norway cohort comprised 2624 patients after THA recruited from the Norwegian Arthroplasty Registry, of whom 779 had undergone revision surgery for osteolysis. The UK cohort included 890 patients previously recruited from hospitals in the north of England, 317 who either had radiographic evidence of and/or had undergone revision surgery for osteolysis. All participants had received a fully cemented or hybrid THA using a small-diameter metal or ceramic-on-conventional polyethylene bearing. Osteolysis susceptibility case-control analyses and quantitative trait analyses for time to prosthesis revision (a proxy measure of the speed of osteolysis onset) in those patients with osteolysis were undertaken in each cohort separately after genome-wide genotyping. Finally, a meta-analysis of the two independent cohort association analysis results was undertaken. RESULTS: Genome-wide association analysis identified four independent suggestive genetic signals for osteolysis case-control status in the Norwegian cohort and 11 in the UK cohort (p ≤ 5 x 10). After meta-analysis, five independent genetic signals showed a suggestive association with osteolysis case-control status at p ≤ 5 x 10 with the strongest comprising 18 correlated variants on chromosome 7 (lead signal rs850092, p = 1.13 x 10). Genome-wide quantitative trait analysis in cases only showed a total of five and nine independent genetic signals for time to revision at p ≤ 5 x 10, respectively. After meta-analysis, 11 independent genetic signals showed suggestive evidence of an association with time to revision at p ≤ 5 x 10 with the largest association block comprising 174 correlated variants in chromosome 15 (lead signal rs10507055, p = 1.40 x 10). CONCLUSIONS: We explored the heritable biology of osteolysis at the whole genome level and identify several genetic loci that associate with susceptibility to osteolysis or with premature revision surgery. However, further studies are required to determine a causal association between the identified signals and osteolysis and their functional role in the disease. CLINICAL RELEVANCE: The identification of novel genetic risk loci for osteolysis enables new investigative avenues for clinical biomarker discovery and therapeutic intervention in this disease.


Assuntos
Artroplastia de Quadril/efeitos adversos , Artroplastia de Quadril/instrumentação , Loci Gênicos , Articulação do Quadril/cirurgia , Prótese de Quadril , Osteólise/genética , Falha de Prótese , Idoso , Distinções e Prêmios , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Articulação do Quadril/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Noruega , Osteólise/diagnóstico , Osteólise/fisiopatologia , Osteólise/cirurgia , Desenho de Prótese , Sistema de Registros , Reoperação , Fatores de Risco , Fatores de Tempo , Tempo para o Tratamento , Resultado do Tratamento , Reino Unido
3.
Commun Biol ; 1: 56, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30273415

RESUMO

Developmental dysplasia of the hip (DDH) is the most common skeletal developmental disease. However, its genetic architecture is poorly understood. We conduct the largest DDH genome-wide association study to date and replicate our findings in independent cohorts. We find the heritable component of DDH attributable to common genetic variants to be 55% and distributed equally across the autosomal and X-chromosomes. We identify replicating evidence for association between GDF5 promoter variation and DDH (rs143384, effect allele A, odds ratio 1.44, 95% confidence interval 1.34-1.56, P = 3.55 × 10-22). Gene-based analysis implicates GDF5 (P = 9.24 × 10-12), UQCC1 (P = 1.86 × 10- 10), MMP24 (P = 3.18 × 10-9), RETSAT (P = 3.70 × 10- 8) and PDRG1 (P = 1.06 × 10- 7) in DDH susceptibility. We find shared genetic architecture between DDH and hip osteoarthritis, but no predictive power of osteoarthritis polygenic risk score on DDH status, underscoring the complex nature of the two traits. We report a scalable, time-efficient recruitment strategy and establish for the first time to our knowledge a robust DDH genetic association locus at GDF5.

4.
Rheumatology (Oxford) ; 57(8): 1481-1489, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741735

RESUMO

Objectives: To identify molecular differences between chondrocytes from osteophytic and articular cartilage tissue from OA patients. Methods: We investigated genes and pathways by combining genome-wide DNA methylation, RNA sequencing and quantitative proteomics in isolated primary chondrocytes from the cartilaginous layer of osteophytes and matched areas of low- and high-grade articular cartilage across nine patients with OA undergoing hip replacement surgery. Results: Chondrocytes from osteophytic cartilage showed widespread differences to low-grade articular cartilage chondrocytes. These differences were similar to, but more pronounced than, differences between chondrocytes from osteophytic and high-grade articular cartilage, and more pronounced than differences between high- and low-grade articular cartilage. We identified 56 genes with significant differences between osteophytic chondrocytes and low-grade articular cartilage chondrocytes on all three omics levels. Several of these genes have known roles in OA, including ALDH1A2 and cartilage oligomeric matrix protein, which have functional genetic variants associated with OA from genome-wide association studies. An integrative gene ontology enrichment analysis showed that differences between osteophytic and low-grade articular cartilage chondrocytes are associated with extracellular matrix organization, skeletal system development, platelet aggregation and regulation of ERK1 and ERK2 cascade. Conclusion: We present a first comprehensive view of the molecular landscape of chondrocytes from osteophytic cartilage as compared with articular cartilage chondrocytes from the same joints in OA. We found robust changes at genes relevant to chondrocyte function, providing insight into biological processes involved in osteophyte development and thus OA progression.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Epigenômica/métodos , Estudo de Associação Genômica Ampla , Osteoartrite do Quadril/genética , Proteômica/métodos , RNA/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Cartilagem Articular/patologia , Condrócitos/patologia , Cromatografia Líquida , Metilação de DNA , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Osteoartrite do Quadril/metabolismo , Osteoartrite do Quadril/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA