Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
2.
Sci Rep ; 14(1): 13315, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858439

RESUMO

Exposure to high, marginally lethal doses or higher of ionizing radiation, either intentional or accidental, results in injury to various organs. Currently, there is only a limited number of safe and effective radiation countermeasures approved by US Food and Drug Administration for such injuries. These approved agents are effective for only the hematopoietic component of the acute radiation syndrome and must be administered only after the exposure event: currently, there is no FDA-approved agent that can be used prophylactically. The nutraceutical, gamma-tocotrienol (GT3) has been found to be a promising radioprotector of such exposure-related injuries, especially those of a hematopoietic nature, when tested in either rodents or nonhuman primates. We investigated the nature of injuries and the possible protective effects of GT3 within select organ systems/tissues caused by both non-lethal level (4.0 Gy), as well as potentially lethal level (5.8 Gy) of ionizing radiation, delivered as total-body or partial-body exposure. Results indicated that the most severe, dose-dependent injuries occurred within those organ systems with strong self-renewing capacities (e.g., the lymphohematopoietic and gastrointestinal systems), while in other tissues (e.g., liver, kidney, lung) endowed with less self-renewal, the pathologies noted tended to be less pronounced and less dependent on the level of exposure dose or on the applied exposure regimen. The prophylactic use of the test nutraceutical, GT3, appeared to limit the extent of irradiation-associated pathology within blood forming tissues and, to some extent, within the small intestine of the gastrointestinal tract. No distinct, global pattern of bodily protection was noted with the agent's use, although a hint of a possible radioprotective benefit was suggested not only by a lessening of apparent injury within select organ systems, but also by way of noting the lack of early onset of moribundity within select GT3-treated animals.


Assuntos
Suplementos Nutricionais , Protetores contra Radiação , Animais , Protetores contra Radiação/farmacologia , Vitamina E/farmacologia , Vitamina E/análogos & derivados , Síndrome Aguda da Radiação/prevenção & controle , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/patologia , Cromanos/farmacologia , Masculino , Lesões Experimentais por Radiação/prevenção & controle , Lesões Experimentais por Radiação/patologia , Macaca mulatta , Fígado/efeitos dos fármacos , Fígado/efeitos da radiação , Fígado/patologia
3.
Sci Rep ; 14(1): 5757, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459144

RESUMO

Despite remarkable scientific progress over the past six decades within the medical arts and in radiobiology in general, limited radiation medical countermeasures (MCMs) have been approved by the United States Food and Drug Administration for the acute radiation syndrome (ARS). Additional effort is needed to develop large animal models for improving the prediction of clinical safety and effectiveness of MCMs for acute and delayed effects of radiation in humans. Nonhuman primates (NHPs) are considered the animal models that reproduce the most appropriate representation of human disease and are considered the gold standard for drug development and regulatory approval. The clinical and histopathological effects of supralethal, total- or partial-body irradiations (12 Gy) of NHPs were assessed, along with possible protective actions of a promising radiation MCM, gamma-tocotrienol (GT3). Results show that these supralethal radiation exposures induce severe injuries that manifest both clinically as well as pathologically, as evidenced by the noted functionally crippling lesions within various major organ systems of experimental NHPs. The MCM, GT3, has limited radioprotective efficacy against such supralethal radiation doses.


Assuntos
Síndrome Aguda da Radiação , Cromanos , Contramedidas Médicas , Protetores contra Radiação , Vitamina E/análogos & derivados , Animais , Estados Unidos , Humanos , Vitamina E/farmacologia , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/patologia , Modelos Animais de Doenças , Protetores contra Radiação/farmacologia , Macaca mulatta
4.
Radiat Res ; 201(1): 55-70, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059553

RESUMO

Currently, no radioprotectors have been approved to mitigate hematopoietic injury after exposure to ionizing radiation. Acute ionizing radiation results in damage to both hematopoietic and immune system cells. Pre-exposure prophylactic agents are needed for first responders and military personnel. In this study, the ability of gamma-tocotrienol (GT3), a promising radioprotector and antioxidant, to ameliorate partial-body radiation-induced damage to the hematopoietic compartment was evaluated in a nonhuman primate (NHP) model. A total of 15 rhesus NHPs were divided into two groups, and were administered either GT3 or vehicle 24 h prior to 4 or 5.8 Gy partial-body irradiation (PBI), with 5% bone marrow (BM) sparing. Each group consisted of four NHPs, apart from the vehicle-treated group exposed to 5.8 Gy, which had only three NHPs. BM samples were collected 8 days prior to irradiation in addition to 2, 7, 14, and 30 days postirradiation. To assess the clonogenic ability of hematopoietic stem and progenitor cells (HSPCs), colony forming unit (CFU) assays were performed, and lymphoid cells were immunophenotyped using flow cytometry. As a result of GT3 treatment, an increase in HSPC function was evident by an increased recovery of CFU-granulocyte macrophages (CFU-GM). Additionally, GT3 treatment was shown to increase the percentage of CD34+ cells, including T and NK-cell subsets. Our data further affirm GT3's role in hematopoietic recovery and suggest the need for its further development as a prophylactic radiation medical countermeasure.


Assuntos
Cromanos , Protetores contra Radiação , Animais , Macaca mulatta , Protetores contra Radiação/farmacologia , Vitamina E/farmacologia , Medula Óssea/efeitos da radiação
5.
Int J Radiat Biol ; 99(4): 644-655, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35939319

RESUMO

PURPOSE: Nuclear weapons testing in the northern Marshall Islands between 1946 and 1958 resulted in ionizing radiation (IR) exposure of the thousands of Marshallese. Furthermore, numerous islands were contaminated by radioactive fallout. Significant increases in cancer and metabolic syndrome incidences have been reported among Marshallese, and potential for further increases looms due to the latency of radiation-induced health effects. The purpose of this study was to investigate the genetic and epigenetic effects of exposure to IR that could be associated with radiation-induced disease among the Northwest Arkansas (NWA) Marshallese. MATERIALS AND METHODS: We performed analysis of chromosomal aberrations and DNA methylation based on residential and exposure history of NWA Marshallese. RESULTS: Analysis of chromosomal aberrations demonstrated higher incidence of genetic rearrangements in women with self-reported history of radiation exposure (95% CI: 0.10, 1.22; p=.022). Further clustering of study participants based on their residential history demonstrated that participants who spent substantial amounts of time (≥6 months) in the northern atolls (thus, in the proximity of nuclear tests) before 1980 had more chromosomal aberrations than their peers who lived only in the southern atolls (95% CI: 0.08, -0.95; p=.021), and that this difference was driven by women. A relationship between the time spent in the northern atolls and increase in chromosomal aberrations was observed: 0.31 increase in chromosomal aberrations for every 10 years spent at northern atolls (95% CI: 0.06, 0.57; p=.020). Finally, significant inverse correlations between the chromosomal aberrations and the extent of DNA methylation of four LINE-1 elements L1PA2, L1PA16, L1PREC1, and L1P4B were identified. CONCLUSIONS: The results of this study provide first evidence of the presence of stable genetic and epigenetic rearrangements in peripheral lymphocytes of NWA Marshallese and warrant further studies to analyze the role of radiation exposure in health disparities experienced by this Pacific Island nation.


Assuntos
Aberrações Cromossômicas , Linfócitos , Feminino , Humanos , Arkansas , Análise Citogenética , Epigênese Genética
6.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36555814

RESUMO

Radiation exposure causes acute damage to hematopoietic and immune cells. To date, there are no radioprotectors available to mitigate hematopoietic injury after radiation exposure. Gamma-tocotrienol (GT3) has demonstrated promising radioprotective efficacy in the mouse and nonhuman primate (NHP) models. We determined GT3-mediated hematopoietic recovery in total-body irradiated (TBI) NHPs. Sixteen rhesus macaques divided into two groups received either vehicle or GT3, 24 h prior to TBI. Four animals in each treatment group were exposed to either 4 or 5.8 Gy TBI. Flow cytometry was used to immunophenotype the bone marrow (BM) lymphoid cell populations, while clonogenic ability of hematopoietic stem cells (HSCs) was assessed by colony forming unit (CFU) assays on day 8 prior to irradiation and days 2, 7, 14, and 30 post-irradiation. Both radiation doses showed significant changes in the frequencies of B and T-cell subsets, including the self-renewable capacity of HSCs. Importantly, GT3 accelerated the recovery in CD34+ cells, increased HSC function as shown by improved recovery of CFU-granulocyte macrophages (CFU-GM) and burst-forming units erythroid (B-FUE), and aided the recovery of circulating neutrophils and platelets. These data elucidate the role of GT3 in hematopoietic recovery, which should be explored as a potential medical countermeasure to mitigate radiation-induced injury to the hematopoietic system.


Assuntos
Células-Tronco Hematopoéticas , Vitamina E , Camundongos , Animais , Macaca mulatta , Vitamina E/farmacologia , Cromanos/farmacologia , Irradiação Corporal Total
7.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563033

RESUMO

The gastrointestinal (GI) system is highly susceptible to irradiation. Currently, there is no Food and Drug Administration (FDA)-approved medical countermeasures for GI radiation injury. The vitamin E analog gamma-tocotrienol (GT3) is a promising radioprotector in mice and nonhuman primates (NHP). We evaluated GT3-mediated GI recovery in total-body irradiated (TBI) NHPs. Sixteen rhesus macaques were divided into two groups; eight received vehicle and eight GT3 24 h prior to 12 Gy TBI. Proximal jejunum was assessed for structural injuries and crypt survival on day 4 and 7. Apoptotic cell death and crypt cell proliferation were assessed with TUNEL and Ki-67 immunostaining. Irradiation induced significant shortening of the villi and reduced mucosal surface area. GT3 induced an increase in crypt depth at day 7, suggesting that more stem cells survived and proliferated after irradiation. GT3 did not influence crypt survival after irradiation. GT3 treatment caused a significant decline in TUNEL-positive cells at both day 4 (p < 0.03) and 7 (p < 0.0003). Importantly, GT3 induced a significant increase in Ki-67-positive cells at day 7 (p < 0.05). These data suggest that GT3 has radioprotective function in intestinal epithelial and crypt cells. GT3 should be further explored as a prophylactic medical countermeasure for radiation-induced GI injury.


Assuntos
Síndrome Aguda da Radiação , Cromanos , Protetores contra Radiação , Vitamina E , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/prevenção & controle , Animais , Cromanos/uso terapêutico , Modelos Animais de Doenças , Intestinos/patologia , Intestinos/efeitos da radiação , Antígeno Ki-67 , Macaca mulatta , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico , Vitamina E/análogos & derivados , Vitamina E/uso terapêutico
8.
Methods Cell Biol ; 168: 235-247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35366985

RESUMO

Ionizing radiation (IR) is a significant contributor to the contemporary market of energy production and an important diagnostic and treatment modality. Besides having numerous useful applications, it is also a ubiquitous environmental stressor and a potent genotoxic and epigenotoxic agent, capable of causing substantial damage to organs and tissues of living organisms. The gastrointestinal (GI) tract is highly sensitive to IR. This problem is further compounded by the fact that there is no FDA-approved medication to mitigate acute radiation-induced GI syndrome. Therefore, establishing the animal model for studying IR-induced GI-injury is crucially important to understand the harmful consequences of intestinal radiation damage. Here, we discuss two different animal models of IR-induced acute gastrointestinal syndrome and two separate methods for measuring the magnitude of intestinal radiation damage.


Assuntos
Lesões por Radiação , Roedores , Animais , Trato Gastrointestinal , Intestinos , Permeabilidade , Lesões por Radiação/etiologia
9.
Radiother Oncol ; 168: 130-137, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35093409

RESUMO

BACKGROUND: Preclinical data suggest that combined gamma-tocotrienol with pentoxifylline ameliorates radiotherapy-induced gastrointestinal damage. AIM: To test whether gastrointestinal symptoms arising after radiotherapy, and persisting after maximal medical therapy, can be improved using Tocovid SupraBio 200 mg and pentoxifylline 400 mg orally twice daily for one year. Patients stratified by severity of symptoms, and randomised to active treatment or matched placebo were assessed after 12 months. The primary end point was improvement in gastrointestinal symptoms measured using the Inflammatory Bowel Disease Questionnaire, bowel subset score. Changes in bio-markers of fibrosis were assessed. RESULTS: 62 patients, median age 66, 34(55%) treated for prostate, 21(34%) gynaecological, 6(10%) anal and one(1%) rectal cancer were recruited; 40(65%) randomised to treatment, 22(35%) to placebo, 39 months (median) after radiotherapy completion. Gamma tocotrienol was not detected in serum in 41% of treated patients, despite good compliance with study medication. Treatment was completed in 28(70%) and 17(77%) patients in the treatment and placebo groups respectively. No improvement in symptom scores nor in quality of life was identified. Thirteen serious adverse events occurred. A transient ischaemic attack, was possibly related to pentoxifylline, others were assessed as unlikely to be related to treatment. Levels of EGF, PDGF and FGF were significantly reduced and consistent trends in reduced inflammation were seen during treatment but were not sustained once treatment ended. SUMMARY: This single centre study closed prematurely and therefore data interpretation is of necessity limited. No clinical benefit was demonstrated. However, biochemical data suggest that this intervention does have anti-inflammatory and anti-fibrotic effects.


Assuntos
Neoplasias Pélvicas , Pentoxifilina , Tocotrienóis , Método Duplo-Cego , Humanos , Masculino , Neoplasias Pélvicas/radioterapia , Pentoxifilina/uso terapêutico , Qualidade de Vida , Resultado do Tratamento
10.
Metabolites ; 11(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34436481

RESUMO

The acute radiation syndrome is defined in large part by radiation injury in the hematopoietic and gastrointestinal (GI) systems. To identify new pathways involved in radiation-induced GI injury, this study assessed dose- and time-dependent changes in plasma metabolites in a nonhuman primate model of whole abdominal irradiation. Male and female adult Rhesus monkeys were exposed to 6 MV photons to the abdomen at doses ranging between 8 and 14 Gy. At time points from 1 to 60 days after irradiation, plasma samples were collected and subjected to untargeted metabolomics. With the limited sample size of females, different discovery times after irradiation between males and females were observed in metabolomics pattern. Detailed analyses are restricted to only males for the discovery power. Radiation caused an increase in fatty acid oxidation and circulating levels of corticosteroids which may be an indication of physiological stress, and amino acids, indicative of a cellular repair response. The largest changes were observed at days 9 and 10 post-irradiation, with most returning to baseline at day 30. In addition, dysregulated metabolites involved in amino acid pathways, which might indicate changes in the microbiome, were detected. In conclusion, abdominal irradiation in a nonhuman primate model caused a plasma metabolome profile indicative of GI injury. These results point to pathways that may be targeted for intervention or used as early indicators of GI radiation injury. Moreover, our results suggest that effects are sex-specific and that interventions may need to be tailored accordingly.

11.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673497

RESUMO

Both cell and animal studies have shown that complete or partial deficiency of methionine inhibits tumor growth. Consequently, the potential implementation of this nutritional intervention has recently been of great interest for the treatment of cancer patients. Unfortunately, diet alteration can also affect healthy immune cells such as monocytes/macrophages and their precursor cells in bone marrow. As around half of cancer patients are treated with radiotherapy, the potential deleterious effect of dietary methionine deficiency on immune cells prior to and/or following irradiation needs to be evaluated. Therefore, we examined whether modulation of methionine content alters genetic stability in the murine RAW 264.7 monocyte/macrophage cell line in vitro by chromosomal analysis after 1-month culture in a methionine-deficient or supplemented medium. We also analyzed chromosomal aberrations in the bone marrow cells of CBA/J mice fed with methionine-deficient or supplemented diet for 2 months. While all RAW 264.7 cells revealed a complex translocation involving three chromosomes, three different clones based on the banding pattern of chromosome 9 were identified. Methionine deficiency altered the ratio of the three clones and increased chromosomal aberrations and DNA damage in RAW 264.7. Methionine deficiency also increased radiation-induced chromosomal aberration and DNA damage in RAW 264.7 cells. Furthermore, mice maintained on a methionine-deficient diet showed more chromosomal aberrations in bone marrow cells than those given methionine-adequate or supplemented diets. These findings suggest that caution is warranted for clinical implementation of methionine-deficient diet concurrent with conventional cancer therapy.


Assuntos
Células da Medula Óssea/metabolismo , Aberrações Cromossômicas , Dano ao DNA , Desnutrição/genética , Metionina/deficiência , Animais , Reparo do DNA , Dieta , Macrófagos , Masculino , Desnutrição/metabolismo , Camundongos , Camundongos Endogâmicos CBA , Monócitos , Células RAW 264.7
12.
Int J Radiat Oncol Biol Phys ; 109(2): 581-593, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002540

RESUMO

BACKGROUND AND PURPOSE: Identification of appropriate dietary strategies for prevention of weight and muscle loss in cancer patients is crucial for successful treatment and prolonged patient survival. High-protein oral nutritional supplements decrease mortality and improve indices of nutritional status in cancer patients; however, high-protein diets are often rich in methionine, and experimental evidence indicates that a methionine-supplemented diet (MSD) exacerbates gastrointestinal toxicity after total body irradiation. Here, we sought to investigate whether MSD can exacerbate gastrointestinal toxicity after local abdominal irradiation, an exposure regimen more relevant to clinical settings. MATERIALS AND METHODS: Male CBA/CaJ mice fed either a methionine-adequate diet or MSD (6.5 mg methionine/kg diet vs 19.5 mg/kg) received localized abdominal X-irradiation (220 kV, 13 mA) using the Small Animal Radiation Research Platform, and tissues were harvested 4, 7, and 10 days after irradiation. RESULTS: MSD exacerbated gastrointestinal toxicity after local abdominal irradiation with 12.5 Gy. This was evident as impaired nutrient absorption was paralleled by reduced body weight recovery. Mechanistically, significant shifts in the gut ecology, evident as decreased microbiome diversity, and substantially increased bacterial species that belong to the genus Bacteroides triggered proinflammatory responses. The latter were evident as increases in circulating neutrophils with corresponding decreases in lymphocytes and associated molecular alterations, exhibited as increases in mRNA levels of proinflammatory genes Icam1, Casp1, Cd14, and Myd88. Altered expression of the tight junction-related proteins Cldn2, Cldn5, and Cldn6 indicated a possible increase in intestinal permeability and bacterial translocation to the liver. CONCLUSIONS: We report that dietary supplementation with methionine exacerbates gastrointestinal syndrome in locally irradiated mice. This study demonstrates the important roles registered dieticians should play in clinical oncology and further underlines the necessity of preclinical and clinical investigations in the role of diet in the success of cancer therapy.


Assuntos
Abdome/efeitos da radiação , Suplementos Nutricionais/efeitos adversos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos da radiação , Metionina/efeitos adversos , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/efeitos da radiação , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos da radiação , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Masculino , Camundongos , RNA Mensageiro/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/efeitos da radiação
13.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G439-G450, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961718

RESUMO

Methionine is an essential amino acid needed for a variety of processes in living organisms. Ionizing radiation depletes tissue methionine concentrations and leads to the loss of DNA methylation and decreased synthesis of glutathione. In this study, we aimed to investigate the effects of methionine dietary supplementation in CBA/CaJ mice after exposure to doses ranging from 3 to 8.5 Gy of 137Cs of total body irradiation. We report that mice fed a methionine-supplemented diet (MSD; 19.5 vs. 6.5 mg/kg in a methionine-adequate diet, MAD) developed acute radiation toxicity at doses as low as 3 Gy. Partial body irradiation performed with hindlimb shielding resulted in a 50% mortality rate in MSD-fed mice exposed to 8.5 Gy, suggesting prevalence of radiation-induced gastrointestinal syndrome in the development of acute radiation toxicity. Analysis of the intestinal microbiome demonstrated shifts in the gut ecology, observed along with the development of leaky gut syndrome and bacterial translocation into the liver. Normal gut physiology impairment was facilitated by alterations in the one-carbon metabolism pathway and was exhibited as decreases in circulating citrulline levels mirrored by decreased intestinal mucosal surface area and the number of surviving crypts. In conclusion, we demonstrate that a relevant excess of methionine dietary intake exacerbates the detrimental effects of exposure to ionizing radiation in the small intestine.NEW & NOTEWORTHY Methionine supplementation, instead of an anticipated health-promoting effect, sensitizes mice to gastrointestinal radiation syndrome. Mechanistically, excess of methionine negatively affects intestinal ecology, leading to a cascade of physiological, biochemical, and molecular alterations that impair normal gut response to a clinically relevant genotoxic stressor. These findings speak toward increasing the role of registered dietitians during cancer therapy and the necessity of a solid scientific background behind the sales of dietary supplements and claims regarding their benefits.


Assuntos
Síndrome Aguda da Radiação/etiologia , Suplementos Nutricionais/toxicidade , Intestino Delgado/efeitos dos fármacos , Metionina/toxicidade , Lesões Experimentais por Radiação/etiologia , Síndrome Aguda da Radiação/metabolismo , Síndrome Aguda da Radiação/microbiologia , Síndrome Aguda da Radiação/patologia , Animais , Metilação de DNA/efeitos dos fármacos , Disbiose , Metabolismo Energético/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Intestino Delgado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Doses de Radiação , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/microbiologia , Lesões Experimentais por Radiação/patologia , Fatores de Risco , Irradiação Corporal Total
14.
Int J Radiat Biol ; 96(1): 93-99, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561233

RESUMO

Purpose: Growing rates of metabolic syndrome and associated obesity warrant the development of appropriate animal models for better understanding of how those conditions may affect sensitivity to IR exposure.Materials and methods: We subjected male NZO/HlLtJ mice, a strain prone to spontaneous obesity and diabetes, to 0, 5.5, 6.37, 7.4 or 8.5 Gy (137Cs) of total body irradiation (TBI). Mice were monitored for 30 days, after which proximal jejunum and colon tissues were collected for further histological and molecular analysis.Results: Obese NZO/HlLtJ male mice are characterized by their lower sensitivity to IR at doses of 6.37 Gy and under, compared to other strains. Further escalation of the dose, however, results in a steep survival curve, reaching LD100/30 values at a dose of 8.5 Gy. Alterations in the expression of various tight junction-related proteins coupled with activation of inflammatory responses and cell death were the main contributors to the gastrointestinal syndrome.Conclusions: We demonstrate that metabolic syndrome with exhibited hyperglycemia but without alterations to the microvasculature is not a pre-requisite of the increased sensitivity to TBI at high doses. Our studies indicate the potential of NZO/HlLtJ mice for the studies on the role of metabolic syndrome in acute radiation toxicity.


Assuntos
Síndrome Metabólica/etiologia , Lesões por Radiação/etiologia , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/complicações , Síndrome Metabólica/patologia , Camundongos , Obesidade/complicações , Lesões por Radiação/sangue , Lesões por Radiação/complicações , Lesões por Radiação/patologia , Análise de Sobrevida , Junções Íntimas/efeitos da radiação
15.
Sci Rep ; 9(1): 13953, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562350

RESUMO

Ionizing radiation (IR)-induced intestinal damage is characterized by a loss of intestinal crypt cells, intestinal barrier disruption and translocation of intestinal microflora resulting in sepsis-mediated lethality. We have shown that mice lacking C/EBPδ display IR-induced intestinal and hematopoietic injury and lethality. The purpose of this study was to investigate whether increased IR-induced inflammatory, oxidative and nitrosative stress promote intestinal injury and sepsis-mediated lethality in Cebpd-/- mice. We found that irradiated Cebpd-/- mice show decreased villous height, crypt depth, crypt to villi ratio and expression of the proliferation marker, proliferating cell nuclear antigen, indicative of intestinal injury. Cebpd-/- mice show increased expression of the pro-inflammatory cytokines (Il-6, Tnf-α) and chemokines (Cxcl1, Mcp-1, Mif-1α) and Nos2 in the intestinal tissues compared to Cebpd+/+ mice after exposure to TBI. Cebpd-/- mice show decreased GSH/GSSG ratio, increased S-nitrosoglutathione and 3-nitrotyrosine in the intestine indicative of basal oxidative and nitrosative stress, which was exacerbated by IR. Irradiated Cebpd-deficient mice showed upregulation of Claudin-2 that correlated with increased intestinal permeability, presence of plasma endotoxin and bacterial translocation to the liver. Overall these results uncover a novel role for C/EBPδ in protection against IR-induced intestinal injury by suppressing inflammation and nitrosative stress and underlying sepsis-induced lethality.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Inflamação/metabolismo , Intestinos/efeitos da radiação , Estresse Nitrosativo/fisiologia , Lesões Experimentais por Radiação/metabolismo , Sepse/metabolismo , Animais , Proteína delta de Ligação ao Facilitador CCAAT/genética , Quimiocinas/metabolismo , Citocinas/metabolismo , Inflamação/genética , Enteropatias/genética , Enteropatias/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos da radiação , Camundongos , Camundongos Knockout , Lesões Experimentais por Radiação/genética , Radiação Ionizante , Sepse/genética
16.
Life Sci Space Res (Amst) ; 22: 8-15, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31421852

RESUMO

Cardiovascular disease constitutes an important threat to humans after space missions beyond the Earth's magnetosphere. Epigenetic alterations have an important role in the etiology and pathogenesis of cardiovascular disease. Previous research in animal models has shown that protons and 56Fe ions cause long-term changes in DNA methylation and expression of repetitive elements in the heart. However, astronauts will be exposed to a variety of ions, including the smaller fragmented products of heavy ions after they interact with the walls of the space craft. Here, we investigated the effects of 16O on the cardiac methylome and one-carbon metabolism in male C57BL/6 J mice. Left ventricles were examined 14 and 90 days after exposure to space-relevant doses of 0.1, 0.25, or 1 Gy of 16O (600 MeV/n). At 14 days, the two higher radiation doses elicited global DNA hypomethylation in the 5'-UTR of Long Interspersed Nuclear Elements 1 (LINE-1) compared to unirradiated, sham-treated mice, whereas specific LINE-1 elements exhibited hypermethylation at day 90. The pericentromeric major satellites were affected both at the DNA methylation and expression levels at the lowest radiation dose. DNA methylation was elevated, particularly after 90 days, while expression showed first a decrease followed by an increase in transcript abundance. Metabolomics analysis revealed that metabolites involved in homocysteine remethylation, central to DNA methylation, were unaffected by radiation, but the transsulfuration pathway was impacted after 90 days, with a large increase in cystathione levels at the lowest dose. In summary, we observed dynamic changes in the cardiac epigenome and metabolome three months after exposure to a single low dose of oxygen ions.


Assuntos
Metilação de DNA/efeitos da radiação , Coração/efeitos da radiação , Miocárdio/metabolismo , Oxigênio/química , Radiação Ionizante , Voo Espacial , Animais , Carbono/metabolismo , Centrômero , DNA Satélite , Expressão Gênica/efeitos da radiação , Íons/química , Masculino , Redes e Vias Metabólicas , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sequências Repetitivas de Ácido Nucleico
17.
Mil Med ; 184(Suppl 1): 644-651, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30901461

RESUMO

Ionizing radiation exposure is a major concern for active military service members, as well as civilian population. Considering that the exposure is not predictable, it is imperative that strategies to counteract radiation damage must be discovered. Recent in vitro studies performed in our laboratory demonstrated that the vitamin E analog gamma-tocotrienol (GT3) in combination with cholesterol-lowering drugs (Statins), synergistically induced endothelial thrombomodulin, an anticoagulant with radio-protective efficacy. It was hypothesized that the combination of treatment with both GT3 along with Statins would provide better radiation protection in vivo than each drug individually. CD2F1 mice were injected subcutaneously with either vehicle or single dose of GT3 (200 mg/kg body weight) 24 hours before irradiation followed by oral or subcutaneous administration of various doses of simvastatin (25, 50, and 100 mg/kg body weight) before exposure to lethal doses (11.5 and 12 Gy) of Cobalt-60 (60Co) gamma-irradiation. The combined treatment group exhibited enhanced radiation lethality protection substantially, accelerated white blood cell recovery, and augmented restoration of bone marrow cellularity when compared to the animals treated with either drug exclusively. This information clearly suggests that combined treatment could be used as a safeguard for military personnel from exposure to harmful ionizing radiation.


Assuntos
Cromanos/farmacologia , Quimioterapia Combinada/normas , Sinvastatina/farmacologia , Vitamina E/análogos & derivados , Animais , Cromanos/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada/métodos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Masculino , Camundongos , Exposição Ocupacional/efeitos adversos , Radiação Ionizante , Sinvastatina/uso terapêutico , Análise de Sobrevida , Vitamina E/farmacologia , Vitamina E/uso terapêutico
18.
Antioxidants (Basel) ; 8(3)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845647

RESUMO

Natural antioxidant gamma-tocotrienol (GT3), a vitamin E family member, provides intestinal radiation protection. We seek to understand whether this protection is mediated via mucosal epithelial stem cells or sub-mucosal mesenchymal immune cells. Vehicle- or GT3-treated male CD2F1 mice were exposed to total body irradiation (TBI). Cell death was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Villus height and crypt depth were measured with computer-assisted software in tissue sections. Functional activity was determined with an intestinal permeability assay. Immune cell recovery was measured with immunohistochemistry and Western blot, and the regeneration of intestinal crypts was assessed with ex vivo organoid culture. A single dose of GT3 (200 mg/kg body weight (bwt)) administered 24 h before TBI suppressed cell death, prevented a decrease in villus height, increased crypt depth, attenuated intestinal permeability, and upregulated occludin level in the intestine compared to the vehicle treated group. GT3 accelerated mesenchymal immune cell recovery after irradiation, but it did not promote ex vivo organoid formation and failed to enhance the expression of stem cell markers. Finally, GT3 significantly upregulated protein kinase B or AKT phosphorylation after TBI. Pretreatment with GT3 attenuates TBI-induced structural and functional damage to the intestine, potentially by facilitating intestinal immune cell recovery. Thus, GT3 could be used as an intestinal radioprotector.

19.
Int J Radiat Biol ; 95(4): 493-505, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30526224

RESUMO

Radiation-induced gastrointestinal injury or radiation enteropathy is an imminent risk during radiation therapy of abdominal or pelvic tumors. Despite remarkable technological advancements in image-guided radiation delivery techniques, the risk of intestinal injury after radiotherapy for abdominal or pelvic cancers has not been completely eliminated. The irradiated intestine undergoes varying degrees of adverse structural and functional changes, which can result in transient or long-term complications. The risk of development of enteropathy depends on dose, fractionation, and quality of radiation. Moreover, the patients' medical condition, age, inter-individual sensitivity to radiation and size of the treatment area are also risk factors of radiation enteropathy. Therefore, strategies are needed to prevent radiotherapy-induced undesirable alteration in the gastrointestinal tract. Many natural plant products, by virtue of their plethora of biological activities, alleviate the adverse effects of radiation-induced injury. The current review discusses potential roles and possible mechanisms of natural plant products in suppressing radiation enteropathy. Natural plant products have the potential to suppress intestinal radiation toxicity.


Assuntos
Neoplasias Abdominais/radioterapia , Produtos Biológicos/uso terapêutico , Enteropatias/prevenção & controle , Neoplasias Pélvicas/radioterapia , Extratos Vegetais/uso terapêutico , Lesões por Radiação/prevenção & controle , Ácido Ascórbico/uso terapêutico , Curcumina/uso terapêutico , Alho , Humanos , Vitamina E/uso terapêutico
20.
Semin Radiat Oncol ; 29(1): 55-61, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573184

RESUMO

Despite advances in radiation delivery techniques, side effects of radiation therapy due to radiation exposure of normal tissues are common and can limit the deliverable dose to tumors. Significant interests lie in pharmacologic modifiers that may protect against normal tissue toxicity from cancer treatment while simultaneously enhancing the tumor response to therapy. While no such treatments are available in the clinic, this is an area of active preclinical and clinical research. This review summarizes research studies that provide evidence to indicate that tocotrienols, natural forms of vitamin E, are potent radiation protectors and may also have antitumor effects. Hence, several current clinical trials test tocotrienols as concomitant treatment in cancer therapies.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Protetores contra Radiação/farmacologia , Tocotrienóis/farmacologia , Vitamina E/análogos & derivados , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA