Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(3): e0313222, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37129481

RESUMO

Heptose metabolites including ADP-d-glycero-ß-d-manno-heptose (ADP-heptose) are involved in bacterial lipopolysaccharide and cell envelope biosynthesis. Recently, heptoses were also identified to have potent proinflammatory activity on human cells as novel microbe-associated molecular patterns. The gastric pathogenic bacterium Helicobacter pylori produces heptose metabolites, which it transports into human cells through its Cag type 4 secretion system. Using H. pylori as a model, we have addressed the question of how proinflammatory ADP-heptose biosynthesis can be regulated by bacteria. We have characterized the interstrain variability and regulation of heptose biosynthesis genes and the modulation of heptose metabolite production by H. pylori, which impact cell-autonomous proinflammatory human cell activation. HldE, a central enzyme of heptose metabolite biosynthesis, showed strong sequence variability between strains and was also variably expressed between strains. Amounts of gene transcripts in the hldE gene cluster displayed intrastrain and interstrain differences, were modulated by host cell contact and the presence of the cag pathogenicity island, and were affected by carbon starvation regulator A (CsrA). We reconstituted four steps of the H. pylori lipopolysaccharide (LPS) heptose biosynthetic pathway in vitro using recombinant purified GmhA, HldE, and GmhB proteins. On the basis of one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry, the structures of major reaction products were identified as ß-d-ADP-heptose and ß-heptose-1-monophosphate. A proinflammatory heptose-monophosphate variant was also identified for the first time as a novel cell-active product in H. pylori bacteria. Separate purified HldE subdomains and variant HldE allowed us to uncover additional strain variation in generating heptose metabolites. IMPORTANCE Bacterial heptose metabolites, intermediates of lipopolysaccharide (LPS) biosynthesis, are novel microbe-associated molecular patterns (MAMPs) that activate proinflammatory signaling. In the gastric pathogen Helicobacter pylori, heptoses are transferred into host cells by the Cag type IV secretion system, which is also involved in carcinogenesis. Little is known about how H. pylori, which is highly strain variable, regulates heptose biosynthesis and downstream host cell activation. We report here that the regulation of proinflammatory heptose production by H. pylori is strain specific. Heptose gene cluster activity is modulated by the presence of an active cag pathogenicity island (cagPAI), contact with human cells, and the carbon starvation regulator A. Reconstitution with purified biosynthesis enzymes and purified bacterial lysates allowed us to biochemically characterize heptose pathway products, identifying a heptose-monophosphate variant as a novel proinflammatory metabolite. These findings emphasize that the bacteria use heptose biosynthesis to fine-tune inflammation and also highlight opportunities to mine the heptose biosynthesis pathway as a potential therapeutic target against infection, inflammation, and cancer.


Assuntos
Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Lipopolissacarídeos/metabolismo , Heptoses/química , Heptoses/metabolismo , Inflamação , Imunidade Inata , Proteínas de Bactérias/metabolismo
2.
Sci Rep ; 13(1): 6278, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072480

RESUMO

Alpha-protein kinase 1 (ALPK1) is a pathogen recognition receptor that detects ADP-heptose (ADPH), a lipopolysaccharide biosynthesis intermediate, recently described as a pathogen-associated molecular pattern in Gram-negative bacteria. ADPH binding to ALPK1 activates its kinase domain and triggers TIFA phosphorylation on threonine 9. This leads to the assembly of large TIFA oligomers called TIFAsomes, activation of NF-κB and pro-inflammatory gene expression. Furthermore, mutations in ALPK1 are associated with inflammatory syndromes and cancers. While this kinase is of increasing medical interest, its activity in infectious or non-infectious diseases remains poorly characterized. Here, we use a non-radioactive ALPK1 in vitro kinase assay based on the use of ATPγS and protein thiophosphorylation. We confirm that ALPK1 phosphorylates TIFA T9 and show that T2, T12 and T19 are also weakly phosphorylated by ALPK1. Interestingly, we find that ALPK1 itself is phosphorylated in response to ADPH recognition during Shigella flexneri and Helicobacter pylori infection and that disease-associated ALPK1 mutants exhibit altered kinase activity. In particular, T237M and V1092A mutations associated with ROSAH syndrome and spiradenoma/spiradenocarcinoma respectively, exhibit enhanced ADPH-induced kinase activity and constitutive assembly of TIFAsomes. Altogether, this study provides new insights into the ADPH sensing pathway and disease-associated ALPK1 mutants.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Fosforilação , Infecções por Helicobacter/microbiologia , Imunidade Inata , Helicobacter pylori/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Heptoses/química , Heptoses/metabolismo
3.
Curr Opin Immunol ; 82: 102301, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933362

RESUMO

Helicobacter pylori is an intriguing obligate host-associated human pathogen with a specific host interaction biology, which has been shaped by thousands of years of host-pathogen coevolution. Molecular mechanisms of interaction of H. pylori with the local immune cells in the human system are less well defined than epithelial cell interactions, although various myeloid cells, including neutrophils and other phagocytes, are locally present or attracted to the sites of infection and interact with H. pylori. We have recently addressed the question of novel bacterial innate immune stimuli, including bacterial cell envelope metabolites, that can activate and modulate cell responses via the H. pylori Cag type IV secretion system. This review article gives an overview of what is currently known about the interaction modes and mechanisms of H. pylori with diverse human cell types, with a focus on bacterial metabolites and cells of the myeloid lineage including phagocytic and antigen-presenting cells.


Assuntos
Proteínas de Bactérias , Helicobacter pylori , Humanos , Proteínas de Bactérias/metabolismo , Neutrófilos/metabolismo , Imunidade Inata , Células Epiteliais
4.
FEBS Lett ; 595(16): 2160-2168, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216493

RESUMO

The persistence of Helicobacter pylori in the human gastric mucosa implies that the immune response fails to clear the infection. We found that H. pylori compromises the antigen presentation ability of macrophages, because of the decline of the presenting molecules HLA-II. Here, we reveal that the main bacterial factor responsible for this effect is ADP-heptose, an intermediate metabolite in the biosynthetic pathway of lipopolysaccharide (LPS) that elicits a pro-inflammatory response in gastric epithelial cells. In macrophages, it upregulates the expression of miR146b which, in turn, would downmodulate CIITA, the master regulator for HLA-II genes. Hence, H. pylori, utilizing ADP-heptose, exploits a specific arm of macrophage response to establish its survival niche in the face of the immune defense elicited in the gastric mucosa.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Helicobacter pylori/fisiologia , Heptoses/farmacologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Macrófagos/efeitos dos fármacos , Helicobacter pylori/metabolismo , Heptoses/química , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas Nucleares/metabolismo , Transativadores/metabolismo
5.
Front Immunol ; 12: 632154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093525

RESUMO

The human gastric pathogen Helicobacter pylori activates human epithelial cells by a particular combination of mechanisms, including NOD1 and ALPK1-TIFA activation. These mechanisms are characterized by a strong participation of the bacterial cag pathogenicity island, which forms a type IV secretion system (CagT4SS) that enables the bacteria to transport proteins and diverse bacterial metabolites, including DNA, glycans, and cell wall components, into human host cells. Building on previous findings, we sought to determine the contribution of lipopolysaccharide inner core heptose metabolites (ADP-heptose) in the activation of human phagocytic cells by H. pylori. Using human monocyte/macrophage-like Thp-1 cells and human primary monocytes and macrophages, we were able to determine that a substantial part of early phagocytic cell activation, including NF-κB activation and IL-8 production, by live H. pylori is triggered by bacterial heptose metabolites. This effect was very pronounced in Thp-1 cells exposed to bacterial purified lysates or pure ADP-heptose, in the absence of other bacterial MAMPs, and was significantly reduced upon TIFA knock-down. Pure ADP-heptose on its own was able to strongly activate Thp-1 cells and human primary monocytes/macrophages. Comprehensive transcriptome analysis of Thp-1 cells co-incubated with live H. pylori or pure ADP-heptose confirmed a signature of ADP-heptose-dependent transcript activation in monocyte/macrophages. Bacterial enzyme-treated lysates (ETL) and pure ADP-heptose-dependent activation differentiated monocytes into macrophages of predominantly M1 type. In Thp-1 cells, the active CagT4SS was less required for the heptose-induced proinflammatory response than in epithelial cells, while active heptose biosynthesis or pure ADP-heptose was required and sufficient for their early innate response and NF-κB activation. The present data suggest that early activation and maturation of incoming and resident phagocytic cells (monocytes, macrophages) in the H. pylori-colonized stomach strongly depend on bacterial LPS inner core heptose metabolites, also with a significant contribution of an active CagT4SS.


Assuntos
Ilhas Genômicas/fisiologia , Helicobacter pylori/metabolismo , Heptoses/metabolismo , Macrófagos/imunologia , Monócitos/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vias Biossintéticas , Helicobacter pylori/patogenicidade , Humanos , Imunidade Inata , Lipopolissacarídeos/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Monócitos/metabolismo , Transdução de Sinais , Transcriptoma , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo
6.
Front Immunol ; 11: 602802, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281829

RESUMO

Conventional dendritic cell (DC) vaccine strategies, in which DCs are loaded with antigens ex vivo, suffer biological issues such as impaired DC migration capacity and laborious GMP production procedures. In a promising alternative, antigens are targeted to DC-associated endocytic receptors in vivo with antibody-antigen conjugates co-administered with toll-like receptor (TLR) agonists as adjuvants. To combine the potential advantages of in vivo targeting of DCs with those of conjugated TLR agonists, we generated a multifunctional antibody construct integrating the DC-specific delivery of viral- or tumor-associated antigens and DC activation by TLR ligation in one molecule. We validated its functionality in vitro and determined if TLR ligation might improve the efficacy of such a molecule. In proof-of-principle studies, an αCD40 antibody containing a CMV pp65-derived peptide as an antigen domain (αCD40CMV) was genetically fused to the TLR5-binding D0/D1 domain of bacterial flagellin (αCD40.FlgCMV). The analysis of surface maturation markers on immature DCs revealed that fusion of flagellin to αCD40CMV highly increased DC maturation (3.4-fold elevation of CD80 expression compared to αCD40CMV alone) by specifically interacting with TLR5. Immature DCs loaded with αCD40.FlgCMV induced significantly higher CMVNLV-specific T cell activation and proliferation compared to αCD40CMV in co-culture experiments with allogeneic and autologous T cells (1.8-fold increase in % IFN-γ/TNF-α+ CD8+ T cells and 3.9-fold increase in % CMVNLV-specific dextramer+ CD8+ T cells). More importantly, we confirmed the beneficial effects of flagellin-dependent DC stimulation using a tumor-specific neoantigen as the antigen domain. Specifically, the acute myeloid leukemia (AML)-specific mutated NPM1 (mNPM1)-derived neoantigen CLAVEEVSL was delivered to DCs in the form of αCD40mNPM1 and αCD40.FlgmNPM1 antibody constructs, making this study the first to investigate mNPM1 in a DC vaccination context. Again, αCD40.FlgmNPM1-loaded DCs more potently activated allogeneic mNPM1CLA-specific T cells compared to αCD40mNPM1. These in vitro results confirmed the functionality of our multifunctional antibody construct and demonstrated that TLR5 ligation improved the efficacy of the molecule. Future mouse studies are required to examine the T cell-activating potential of αCD40.FlgmNPM1 after targeting of dendritic cells in vivo using AML xenograft models.


Assuntos
Anticorpos/farmacologia , Antígenos CD40/imunologia , Vacinas Anticâncer/farmacologia , Células Dendríticas/efeitos dos fármacos , Flagelina/farmacologia , Ativação Linfocitária , Proteínas Nucleares/farmacologia , Linfócitos T/imunologia , Receptor 5 Toll-Like/agonistas , Proteínas da Matriz Viral/farmacologia , Anticorpos/genética , Anticorpos/imunologia , Antígenos CD40/genética , Vacinas Anticâncer/imunologia , Comunicação Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Epitopos , Proteínas Filagrinas , Flagelina/genética , Flagelina/imunologia , Células HEK293 , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Nucleofosmina , Estudo de Prova de Conceito , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais , Linfócitos T/metabolismo , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA