RESUMO
T cells are an essential part of the immune system. They determine the specificity of the immune response to foreign substances and, thus, help to protect the body from infections and cancer. Recently, T cells have gained much attention as promising tools in adoptive T cell transfer for cancer treatment. However, it is crucial not only for medical purposes but also for research to obtain T cells in large quantities, of high purity and functionality. To fulfill these criteria, efficient and robust isolation methods are needed. We used three different isolation methods to separate CD3-specific T cells from leukocyte concentrates (buffy coats) and Ficoll purified PBMCs. To catch the target cells, the Traceless Affinity Cell Selection (TACS®) method, based on immune affinity chromatography, uses CD-specific low affinity Fab-fragments; while the classical Magnetic Activated Cell Sorting (MACS®) method relies on magnetic beads coated with specific high affinity monoclonal antibodies. The REAlease® system also works with magnetic beads but, in contrast to MACS®, low-affinity antibody fragments are used. The target cells separated by TACS® and REAlease® are "label-free", while cells isolated by MACS® still carry the cell specific label. The time required to isolate T cells from buffy coat by TACS® and MACS® amounted to 90 min and 50 min, respectively, while it took 150 min to isolate T cells from PBMCs by TACS® and 110 min by REAlease®. All methods used are well suited to obtain T cells in large quantities of high viability (>92%) and purity (>98%). Only the median CD4:CD8 ratio of approximately 6.8 after REAlease® separation differed greatly from the physiological conditions. MACS® separation was found to induce proliferation and cytokine secretion. However, independent of the isolation methods used, stimulation of T cells by anti CD3/CD28 resulted in similar rates of proliferation and cytokine production, verifying the functional activity of the isolated cells.
Assuntos
Complexo CD3/metabolismo , Separação Celular/métodos , Coloração e Rotulagem , Linfócitos T/citologia , Contagem de Células , Proliferação de Células , Forma Celular , Sobrevivência Celular , Citocinas/biossíntese , Eritrócitos/citologia , HumanosRESUMO
Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor, characterized by its high genetic heterogeneity. In search of novel putative therapeutic RNA targets we investigated the role of the oncogenic long noncoding RNA LINC00152 (CYTOR, and STAiR18) in A172 glioblastoma cells. Here, we are the first to describe, that LINC00152 unexpectedly acts in a tumor suppressive manner in this cell line. SiRNA-based knockdown of LINC00152 enhanced malignant tumor behaviors including proliferation, cell cycle entry, migration, and invasion, contradicting previous studies using U87-MG and LN229 glioblastoma cells. Furthermore, LINC00152 knockdown had no influence on survival of A172 glioblastoma cells. In a genome wide transcription analysis of A172 and U87-MG glioblastoma cells, we identified 70 LINC00152 target genes involved in locomotion, cell migration, and motility in A172 cells, whereas in U87-MG cells only 40 target genes were detected. The LINC00152-regulated genes found in A172 differed from those identified in U87-MG glioblastoma cells, none of them being regulated in both cell lines. These findings underline the strong genetic heterogeneity of glioblastoma and point to a potential, yet unknown risk addressing LINC00152 lncRNA as a prospective therapeutic target in GBM.
Assuntos
Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Glioblastoma/genética , Glioblastoma/patologia , Humanos , RNA Longo não Codificante/genéticaRESUMO
Inflammatory bowel diseases (IBD), such as Crohn's disease and ulcerative colitis, are multifactorial inflammatory disorders of the gastrointestinal tract, characterised by abdominal cramps, bloody diarrhoea, and anaemia. Standard therapies, including corticosteroids or biologicals, often induce severe side effects, or patients may develop resistance to those therapies. Thus, new therapeutic options for IBD are urgently needed. This study investigates the therapeutic efficacy and safety of two plant-derived ligands of the aryl hydrocarbon receptor (AhR), quercetin (Q), and indol-3-carbinol (I3C), using a translationally relevant mouse model of IBD. Q and I3C are administered by gavage to C57BL/6 wild-type or C57BL/6 Ahr-/- mice suffering from chronic colitis, induced by dextran sulphate sodium (DSS). The course of the disease, intestinal histopathological changes, and in-situ immunological phenotype are scored over 25 days. Our results show that both Q and I3C improved significantly clinical symptoms in moderate DSS colitis, which coincides with a significantly reduced histopathological score. Even in severe DSS colitis I3C, neither Q nor the therapy control 6-thioguanine (6-TG) can prevent a fatal outcome. Moreover, treatment with Q or I3C restored in part DSS-induced loss of epithelial integrity by induction of tight-junction proteins and reduced significantly gut inflammation, as demonstrated by colonoscopy, as well as by immunohistochemistry revealing lower numbers of neutrophils and macrophages. Moreover, the number of Th17 cells is significantly reduced, while the number of Treg cells is significantly increased by treatment with Q or I3C, as well as 6-TG. Q- or I3C-induced amelioration of colitis is not observed in Ahr-/- mice suggesting the requirement of AhR ligation and signalling. Based on the results of this study, plant-derived non-toxic AhR agonists can be considered promising therapeutics in IBD therapy in humans. However, they may differ in terms of efficacy; therefore, it is indispensable to study the dose-response relationship of each individual AhR agonist also with regard to potential adverse effects, since they may also exert AhR-independent effects.
Assuntos
Colite , Receptores de Hidrocarboneto Arílico , Animais , Anti-Inflamatórios/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Sulfato de Dextrana/uso terapêutico , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Humanos , Metanol , Camundongos , Camundongos Endogâmicos C57BL , Quercetina/uso terapêutico , Receptores de Hidrocarboneto Arílico/genéticaRESUMO
Macrophages (MΦ) are known to exhibit distinct responses to viral and bacterial infection, but how they react when exposed to the pathogens in succession is less well understood. Accordingly, we determined the effect of a rubella virus (RV)-induced infection followed by an LPS-induced challenge on cytokine production, signal transduction and metabolic pathways in human GM (M1-like)- and M (M2-like)-MΦ. We found that infection of both subsets with RV resulted in a low TNF-α and a high interferon (IFN, type I and type III) release whereby M-MΦ produced far more IFNs than GM-MΦ. Thus, TNF-α production in contrast to IFN production is not a dominant feature of RV infection in these cells. Upon addition of LPS to RV-infected MΦ compared to the addition of LPS to the uninfected cells the TNF-α response only slightly increased, whereas the IFN-response of both subtypes was greatly enhanced. The subset specific cytokine expression pattern remained unchanged under these assay conditions. The priming effect of RV was also observed when replacing RV by IFN-ß one putative priming stimulus induced by RV. Small amounts of IFN-ß were sufficient for phosphorylation of Stat1 and to induce IFN-production in response to LPS. Analysis of signal transduction pathways activated by successive exposure of MΦ to RV and LPS revealed an increased phosphorylation of NFκB (M-MΦ), but different to uninfected MΦ a reduced phosphorylation of ERK1/2 (both subtypes). Furthermore, metabolic pathways were affected; the LPS-induced increase in glycolysis was dampened in both subtypes after RV infection. In conclusion, we show that RV infection and exogenously added IFN-ß can prime MΦ to produce high amounts of IFNs in response to LPS and that changes in glycolysis and signal transduction are associated with the priming effect. These findings will help to understand to what extent MΦ defense to viral infection is modulated by a following exposure to a bacterial infection.
Assuntos
Citocinas/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Vírus da Rubéola , Citocinas/genética , Glicólise , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Rubéola (Sarampo Alemão)/imunologiaRESUMO
Nicotinamide (NAM) a form of vitamin B3, is an essential precursor of NAD. This dinucleotide (pyridine nucleotide) participates in the regulation of fundamental processes including transcription, cell cycle progression and DNA repair. Here we assessed the effect of NAM on myeloid differentiation of the IL-3 dependent, multipotent hematopoietic progenitor cell line FDCP-Mix. We found that NAM reduces the pSTAT5 signaling response, cell cycling and self-renewal potential. It initiates an atypical program of myeloid differentiation that results in the emergence of granulocytic cells in the absence of added myeloid differentiation factors. NAM did not affect the expression the of cell surface granulocyte marker GR1 but led to a strong downregulation of MHC-II molecules. Taken together our data show that NAM induces a differentiation program in hematopoietic progenitors prompting them to undergo differentiation along the granulocyte path without reaching the status of fully developed granulocytes. Graphical abstract.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Granulócitos/citologia , Células-Tronco Multipotentes/citologia , Niacinamida/farmacologia , Biomarcadores/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Granulócitos/efeitos dos fármacos , Granulócitos/metabolismo , Humanos , Interleucina-3/farmacologia , Células-Tronco Multipotentes/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT5/metabolismoRESUMO
Persistent inflammation and impaired repair in dermal wound healing are frequently associated with cell-cell and cell-matrix miscommunication. A direct coculture model of primary human myofibroblasts (MyoFB) and M-CSF-differentiated macrophages (M-Mɸ) in fibrillar three-dimensional Collagen I (Coll I) matrices is developed to study intercellular interactions. The coculture experiments reveal the number of M-Mɸ regulated MyoFB dedifferentiation in a dose-dependent manner. The amount of MyoFB decreases in dependence of the number of cocultured M-Mɸ, even in the presence of MyoFB-inducing transforming growth factor ß1 (TGF-ß1 ). Gene expression analysis of matrix proteins (collagen I, collagen III, ED-A-fibronectin) confirms the results of an altered MyoFB phenotype. Additionally, M-Mɸ is shown to be the main source of secreted cytokine interleukin-10 (IL-10), which is suggested to affect MyoFB dedifferentiation. These findings indicate a paracrine impact of IL-10 secretion by M-Mɸ on the MyoFB differentiation status counteracting the TGF-ß1 -driven MyoFB activation. Hence, the in vitro coculture model simulates physiological situations during wound resolution and underlines the importance of paracrine IL-10 signals by M-Mɸ. In sum, the 3D Coll I-based matrices with a MyoFB-M-Mɸ coculture form a highly relevant biomimetic model of late stages of wound healing.
Assuntos
Técnicas de Cocultura/métodos , Interleucina-10/metabolismo , Macrófagos/citologia , Miofibroblastos/citologia , Cicatrização/fisiologia , Diferenciação Celular/fisiologia , Colágeno Tipo I/química , Humanos , Macrófagos/metabolismo , Miofibroblastos/metabolismo , Impressão Tridimensional , Alicerces Teciduais/químicaRESUMO
Over the past few years the NAD-related compounds nicotinamide (NAM), nicotinamide riboside (NR) and 1-methylnicotinamide (MNA) have been established as important molecules in signalling pathways that contribute to metabolic functions of many cells, including those of the immune system. Among immune cells, monocytes/macrophages, which are the major players of inflammatory processes, are especially susceptible to the anti-inflammatory action of NAM. Here we asked whether NAM and the two other compounds have the potential to regulate differentiation and LPS-induced biological answers of the monocytic cell line THP-1. We show that treatment of THP-1 cells with NAM, NR and MNA resulted in growth retardation accompanied by enrichment of cells in the G0/G1-phase independent of p21 and p53. NAM and NR caused an increase in intracellular NAD concentrations and SIRT1 and PARP1 mRNA expression was found to be enhanced. The compounds failed to up-regulate the expression of the cell surface differentiation markers CD38, CD11b and CD14. They modulated the reactive oxygen species production and primed the cells to respond less effectively to the LPS induced TNF-α production. Our data show that the NAD metabolites interfere with early events associated with differentiation of THP-1 cells along the monocytic path and that they affect LPS-induced biological responses of the cell line.
Assuntos
Monócitos/imunologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Antígenos de Diferenciação/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocinas/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Monócitos/metabolismo , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Compostos de Piridínio , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismoRESUMO
In response to GM-CSF or M-CSF, macrophages (MΦ) can acquire pro- or anti-inflammatory properties, respectively. Given the importance of CD14 and Toll-like receptor (TLR) 4 in lipopolysaccharide (LPS)-induced signaling, we studied the effect of anti-CD14 antibody mediated CD14 blockade on LPS-induced cytokine production, signal transduction and on the expression levels of CD14 and TLR4 in GM-MΦ and M-MΦ. We found M-MΦ to express higher levels of both surface antigens and to produce more interferon (IFN)-ß and interleukin-10, but less tumor necrosis factor (TNF)-α than GM-MΦ. Blockage of CD14 at high LPS concentrations increased the production of proinflammatory cytokines and decreased that of IFN-ß in M-MΦ but not in GM-MΦ. We show that phosphorylation states of signaling molecules of the MyD88 (myeloid differentiation primary response 88), TRIF (TIR-domain-containing adapter-inducing IFN-ß) and MAPK (mitogen-activated protein kinase) pathways are not altered in any way that would account for the cytokine overshoot reaction. However, CD14 blockage in M-MΦ decreased TLR4 and CD14 expression levels, regardless of the presence of LPS, indicating that the loss of the surface molecules prevented LPS from initiating TRIF signaling. As TNF-α synthesis was even upregulated under these experimental conditions, we suggest that TRIF is normally involved in restricting LPS-induced TNF-α overproduction. Thus, surface CD14 plays a decisive role in the biological response by determining LPS-induced signaling.
Assuntos
Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Anticorpos Monoclonais/metabolismo , Células Cultivadas , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Receptores de Lipopolissacarídeos/imunologia , Lipoproteínas/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismoRESUMO
Intensive research during the past decade has highlighted the impact of the regulatory function of the aryl hydrocarbon receptor (AhR) in immunity. In this study, we focused on the influence of AhR activation on the differentiation of murine bone marrow-derived myeloid precursor cells into mature macrophages. Our results show that the activation of AhR by subtoxic doses of the AhR ligand benzo(a)pyrene (BaP) impaired the proliferation of bone marrow cells (BMCs) whereas the proportion of resulting adherent cells was not affected. Flow cytometric analysis revealed that the number of mature bone marrow-derived macrophages (BMMs) was significantly decreased by AhR activation. However, expression of the murine macrophage marker F4/80, the major histocompatibility complex class II (MHC-II) and the Fcγ receptor I (FcγRI/CD64) were upregulated on BaP-exposed BMMs in an AhR-dependent manner. Analysis of cytokine secretion after BMM activation with heat-killed (hk) salmonellae showed that BaP exposure resulted in suppressed secretion of interleukin (IL)-1ß, IL-6 and the chemokine CXC motif ligand 1 (CXCL1). In contrast, the release of tumor necrosis factor (TNF)-α and IL-10 was increased following BaP exposure. In addition, the production of antimicrobial nitric oxide (NO) was increased AhR-dependently. Bacterial stimulation of BaP exposed BMMs also induced the expression of MHC-II and CD64, while the expression of F4/80 was dramatically decreased. In summary, this study demonstrates for the first time that sustained exposure over 6 days of bone marrow-derived myeloid precursors to subtoxic doses of BaP critically interferes with differentiation and activation of BMMs. We could convincingly show that AhR-induced gene regulation is crucial for homeostasis of pro- and anti-inflammatory cytokines during macrophage activation.
Assuntos
Benzo(a)pireno/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Células Progenitoras Mieloides/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/agonistas , Animais , Antígenos de Diferenciação/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo , Genes MHC da Classe II/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , FenótipoRESUMO
Polycyclic aromatic hydrocarbons such as benzo(a)pyrene (BaP) are environmental contaminants known to be immunosuppressive. Most effects of BaP towards immune cells are thought to be mediated through activation of the aryl hydrocarbon receptor (AhR). The AhR is a ligand-activated transcription factor, which plays a critical modulatory role in various cells during immune response. Macrophages are key players in innate immunity against intracellular bacteria and are discussed to be a target of AhR-mediated immune regulation. However, so far there is only incomplete knowledge about the effects of BaP on activated macrophages and whether these effects are AhR-dependent in each case. Using murine bone marrow-derived macrophages (BMMs) stimulated with heat-killed salmonellae as a source of different pathogen-associated molecular patterns (PAMPs) for stimulation of different pattern recognition receptors (PRRs) as an in-vitro model, we studied the immunomodulatory effects of low-dose BaP exposure. PRR-activated BMMs produced nitric oxide (NO) and a spectrum of proinflammatory cytokines, i.e. tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and IL-12 but also the anti-inflammatory cytokine IL-10. While BaP exposure suppressed the production of proinflammatory cytokines, the secretion of IL-10 was augmented. Moreover, BaP exposure increased the expression of major histocompatibility complex class II (MHC-II), CD14, Fcγ receptor I (FcγRI/CD64), or CD86, enhanced NO production and phagocytosis what may be beneficial for phagocytosis and killing of microbial pathogens. Of note, without PRR activation low-dose BaP exposure has little influence on the macrophage phenotype. BMMs from AhR-deficient (Ahr-/-) mice were widely refractory to BaP-induced modulation of cytokine production, surface marker expression, and functional properties in response to PAMPs stimulation, indicating that these effects are dependent on AhR. In summary, these data suggest that induction of AhR-mediated signalling pathways by BaP may attenuate the proinflammatory phenotype of PRR-activated BMMs, while activating IL-10-mediated anti-inflammatory properties but also enhancing uptake and killing of pathogens as well as antigen presentation. Together these features imply a favourable role of BaP exposure for macrophage functions in an ongoing immune response. However, the strong induction of IL-10 may lead to defective pathogen clearance and subsequently to chronic persistent infection. This concept suggests an inhibitory rather than a supporting influence of environmental BaP on immunity to infection or cancer and also emphasises the important regulatory role of AhR in immunity and inflammation.
Assuntos
Benzo(a)pireno/farmacologia , Citocinas/imunologia , Citocinas/metabolismo , Macrófagos/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Animais , Células Cultivadas , Feminino , Inflamação/genética , Inflamação/imunologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores de Hidrocarboneto Arílico/genéticaRESUMO
In response to environmental stimuli such as granulocyte-macrophage or macrophage colony stimulating factor (GM-CSF/M-CSF), macrophages (MΦ) can acquire distinct functional phenotypes that control inflammatory processes on the one hand and contribute to a broad spectrum of pathologies on the other. Potential intervention strategies will require an understanding of the signalling processes that are associated with macrophage polarization. In the present study, we show that M-MΦ produce more IFN-ß and IL-10 and a lot less TNF-α than do GM-MΦ in response to LPS. To define the molecular mechanisms that underlie the biosynthesis of TNF-α we carried out a detailed investigation of the LPS-induced activation of the canonical and non-canonical myeloid differentiation primary response 88 (MyD88)-dependent signal transduction pathways as well as the TIR-domain-containing adapter-inducing interferon-ß (TRIF)-dependent pathway. Our results show that all three pathways are activated in both cell types and that the activation is more pronounced in M-MΦ. While IL-10 was found to interfere with TNF-α production in M-MΦ, we exclude a decisive role for IFN-ß in this respect. Furthermore, we demonstrate that TNF-α mRNA is markedly destabilized in M-MΦ and that expression of the mRNA destabilizing protein tristetraprolin is greatly enhanced in these cells. Collectively, our study suggests that differential effects of LPS on TNF-α mRNA turnover and on signal transduction pathways influence the amount of TNF-α finally produced by GM-MΦ and M-MΦ.
Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Células Cultivadas , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Interferon beta/farmacologia , Interleucina-10/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/metabolismo , Fator 88 de Diferenciação Mieloide/fisiologia , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tristetraprolina/metabolismo , Fator de Necrose Tumoral alfa/genéticaRESUMO
The differentiation of human monocytes into macrophages is influenced by environmental signals. Here we asked in how far nicotinamide (NAM), a vitamin B3 derivative known to play a major role in nicotinamide adenine dinucleotide (NAD)-mediated signaling events, is able to modulate monocyte differentiation into macrophages developed in the presence of granulocyte macrophage colony-stimulating factor (GM-MØ) or macrophage colony-stimulating factor (M-MØ). We found that GM-MØ undergo biochemical, morphological and functional modifications in response to NAM, whereas M-MØ were hardly affected. GM-MØ exposed to NAM acquired an M-MØ-like structure while the LPS-induced production of pro-inflammatory cytokines and COX-derived eicosanoids were down-regulated. In contrast, NAM had no effect on the production of IL-10 or the cytochrome P450-derived eicosanoids. Administration of NAM enhanced intracellular NAD concentrations; however, it did not prevent the LPS-mediated drain on NAD pools. In search of intracellular molecular targets of NAM known to be involved in LPS-induced cytokine and eicosanoid synthesis, we found NF-κB activity to be diminished. In conclusion, our data show that vitamin B3, when present during the differentiation of monocytes into GM-MØ, interferes with biochemical pathways resulting in strongly reduced pro-inflammatory features.
Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Fator Estimulador de Colônias de Macrófagos , Macrófagos , Monócitos , Niacinamida , Complexo Vitamínico B , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Eicosanoides/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Inflamação , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , NAD , NF-kappa B/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacologia , Transdução de Sinais/efeitos dos fármacos , Complexo Vitamínico B/metabolismo , Complexo Vitamínico B/farmacologiaRESUMO
Nicotinamide phosphoribosyltransferase (NAMPT), an enzyme involved in NAD biosynthesis, has recently been identified as a novel mediator of innate immunity. In the present study, we report that treatment of LPS-primed monocytes with ATP greatly enhanced the secretion of NAMPT in a time- and concentration-dependent manner without displaying any cytotoxic effect. NAMPT release was suppressed by pretreatment with the P2X(7) receptor (P2X(7)R) inhibitors oxidized ATP (oxATP) and KN-62, indicating the engagement of P2X(7)Rs. Furthermore, P2X(7)R was found to be involved in mediating cell permeability caused by the addition of ATP. To define a role of endogenous ATP in NAMPT secretion, LPS-primed monocytes were incubated in the presence of oxATP and KN-62, as well as the ATP-hydrolyzing enzymes apyrase and hexokinase. With the exception of oxATP, neither substance led to a decrease in NAMPT release, suggesting that autocrine/paracrine ATP is unlikely to be responsible for the LPS-induced release of NAMPT. In conclusion, the enhanced release of NAMPT by extracellular ATP described here indicates the requirement of a second stimulus for the efficient secretion of NAMPT. This mode of secretion, which also applies to IL-1ß, might represent a general mechanism for the release of leaderless secretory proteins at locally restricted sites.
Assuntos
Trifosfato de Adenosina/imunologia , Citocinas/metabolismo , Inflamação/fisiopatologia , Monócitos/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Células Cultivadas , Microambiente Celular/fisiologia , Citocinas/genética , Espaço Extracelular/imunologia , Humanos , Imunidade Inata , Lipopolissacarídeos/imunologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Nicotinamida Fosforribosiltransferase/genética , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Recent studies have identified enzymes that use NAD as a substrate, thus contributing to its net consumption. To maintain the intracellular pool, NAD is re-synthesized by a salvage pathway using nicotinamide, the by-product generated by the enzymatic cleavage of NAD. Enzymes involved in NAD re-synthesis include nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase. Our studies show, that NAMPT was substantially up-regulated by LPS in primary human monocytes, suggesting that it may be especially required during the process of monocyte activation. To evaluate the contribution of the NAD rescue pathway to LPS-induced biological responses in human monocytes, we used APO866, a well-characterized inhibitor of NAMPT. Concomitant with the inhibition of NAMPT, LPS-induced TNF-α protein synthesis declined, while TNF-α mRNA levels were minimally affected. Moreover, APO866 strongly decreased the production of reactive oxygen species (ROS), increased surface expression of the NAD-consuming enzyme CD38, and modified the production of selective eicosanoids. We further demonstrate that protein ADP-ribosylation was strongly reduced, indicating a possible link between this post-translational protein modification and human monocyte inflammatory responses. Despite a substantial reduction in intracellular NAD levels, activated monocytes were resistant to apoptosis, while resting monocytes were not. Taken together, our data suggest that activated monocytes strongly depend on the NAD salvage pathway to mount an appropriate inflammatory response. Their survival is not affected by NAD-depletion, probably as a result of LPS-mediated anti-apoptotic signals.
Assuntos
Inflamação/imunologia , Monócitos/imunologia , NAD/imunologia , Nicotinamida Fosforribosiltransferase/metabolismo , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Acrilamidas/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Células Cultivadas , Eicosanoides/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Monócitos/efeitos dos fármacos , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/genética , Piperidinas/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/imunologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para CimaRESUMO
Lipopolysaccharide (LPS) from Gram-negative bacteria is one of the most potent innate immune-activating stimuli known. Here we review the current understanding of LPS effects on human monocyte and macrophage function. We provide an overview of LPS signal transduction with attention given to receptor cooperativity and species differences in LPS responses, as well as the role of tyrosine phosphorylation and lysine acetylation in signalling. We also review LPS-regulated transcription, with emphasis on chromatin remodeling and primary versus secondary transcriptional control mechanisms. Finally, we review the regulation and function of LPS-inducible cytokines produced by human monocytes and macrophages including TNFα, the IL-1 family, IL-6, IL-8, the IL-10 family, the IL-12 family, IL-15 and TGFß.
Assuntos
Citocinas , Lipopolissacarídeos , Macrófagos , Monócitos , Receptor 4 Toll-Like/metabolismo , Acetilação , Animais , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Citocinas/biossíntese , Citocinas/imunologia , Humanos , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Lisina/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Especificidade da Espécie , Tirosina/metabolismo , Células U937RESUMO
Latterly, nicotinamide adenine dinucleotide (NAD+) has emerged as a molecule with versatile functions and of enormous impact on the maintenance of cell integrity. Besides playing key roles in almost all major aspects of energy metabolism, there is mounting evidence that NAD+ and its degradation products affect various biological activities including calcium homeostasis, gene transcription, DNA repair, and intercellular communication. This review is aimed at giving a brief insight into the life cycle of NAD+ in the cell, referring to synthesis, action and degradation aspects. With respect to their immunological relevance, the importance and function of the major NAD+ metabolizing enzymes, namely CD38/CD157, ADP-ribosyltransferases (ARTs), poly-ADP-ribose-polymerases (PARPs), and sirtuins are summarized and roles of NAD+ and its main degradation product adenosine 5'-diphosphoribose (ADPR) in cell signaling are discussed. In addition, an outline of the variety of immunological processes depending on the activity of nicotinamide phosphoribosyltransferase (Nampt), the key enzyme of the salvage pathway of NAD+ synthesis, is presented. Taken together, an efficient supply of NAD+ seems to be a crucial need for a multitude of cell functions, underlining the yet only partly revealed potency of this small molecule to influence cell fate.
Assuntos
Comunicação Celular , Imunomodulação , NAD/imunologia , ADP Ribose Transferases/imunologia , Animais , Metabolismo Energético/imunologia , Humanos , Nicotinamida Fosforribosiltransferase/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Sirtuínas/metabolismoRESUMO
Transient receptor potential melastatin 2 (TRPM2) is a Ca(2+)-permeable nonselective cation channel that is stimulated by oxidative stress and specifically activated by intracellular ADP-ribose. Because TRPM2 is highly expressed in immunocytes, a role of this channel in inflammation processes has been proposed. The aim of the current study was to determine the function of TRPM2 in LPS-induced cytokine production of human monocytes. Incubation of human primary monocytes with LPS resulted in an upregulation of TRPM2 mRNA, protein, and of ADP-ribose-induced membrane currents. By using short hairpin RNA to downregulate TRPM2 expression in THP-1 monocytes, we demonstrate that TRPM2 is required for the LPS-induced production of IL-6, IL-8, IL-10, and TNF-alpha. Application of LPS led to a time-dependent increase in intracellular Ca(2+) concentrations in THP-1 cells that was clearly reduced by downregulation of TRPM2. Omission of extracellular Ca(2+) strongly decreased TNF-alpha production in TRPM2-expressing cells. Thus, TRPM2-mediated Ca(2+) entry is a central mechanism for LPS-induced cytokine production in monocytic cells. The identification of TRPM2 as a major player in this LPS-dependent process makes it a promising tool in modulating monocyte functions.
Assuntos
Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Adenosina Difosfato Ribose/farmacologia , Western Blotting , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Monócitos/citologia , Monócitos/metabolismo , Técnicas de Patch-Clamp , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Cátion TRPM/genética , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Extracellular nicotinamide adenine dinucleotide (NAD(+)) is known to increase the intracellular calcium concentration [Ca(2+)](i) in different cell types and by various mechanisms. Here we show that NAD(+) triggers a transient rise in [Ca(2+)](i) in human monocytes activated with lipopolysaccharide (LPS), which is caused by a release of Ca(2+) from IP(3)-responsive intracellular stores and an influx of extracellular Ca(2+). By the use of P2 receptor-selective agonists and antagonists we demonstrate that P2 receptors play a role in the NAD(+)-induced calcium response in activated monocytes. Of the two subclasses of P2 receptors (P2X and P2Y) the P2Y receptors were considered the most likely candidates, since they share calcium signaling properties with NAD(+). The identification of P2Y(1) and P2Y(11) as receptor subtypes responsible for the NAD(+)-triggered increase in [Ca(2+)](i) was supported by several lines of evidence. First, specific P2Y(1) and P2Y(11) receptor antagonists inhibited the NAD(+)-induced increase in [Ca(2+)](i). Second, NAD(+) was shown to potently induce calcium signals in cells transfected with either subtype, whereas untransfected cells were unresponsive. Third, NAD(+) caused an increase in [cAMP](i), prevented by the P2Y(11) receptor-specific antagonist NF157.
Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Monócitos/metabolismo , NAD/metabolismo , Receptores Purinérgicos P2/metabolismo , Astrocitoma/genética , Astrocitoma/metabolismo , Linhagem Celular Transformada , Clonagem Molecular , AMP Cíclico/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , NAD/farmacologia , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y1RESUMO
OBJECTIVE: Monocytes are a major source of proinflammatory cytokines in rheumatoid arthritis (RA), and inhibitors of monocytic cytokines are highly efficient agents for treatment of the disease. The aim of this study was to analyze the effects of a therapeutic anti-tumor necrosis factor alpha (anti-TNFalpha) antibody on monocytes from patients with RA and healthy control subjects. METHODS: Peripheral blood monocytes from patients with RA and healthy control subjects were incubated in the presence of anti-TNFalpha antibody or IgG. Annexin V staining, caspase activation, poly(ADP-ribose) polymerase cleavage, and DNA staining with propidium iodide were used to analyze apoptosis. The signaling events elicited in monocytes by infliximab were analyzed by Western blotting and electromobility shift assay. RESULTS: Peripheral blood monocytes from patients with RA were characterized by increased expression of transmembrane TNFalpha, spontaneous in vitro production of interleukin-1beta (IL-1beta), and a decreased rate of spontaneous ex vivo apoptosis. Incubation with infliximab induced significantly increased apoptosis in monocytes from patients with RA but not in monocytes from healthy control subjects. This apoptosis was triggered by reverse signaling of transmembrane TNF after ligation by infliximab and was independent of caspase activation. Instead, transmembrane TNF reverse signaling inhibited the constitutive NF-kappaB activation in RA monocytes, suppressed IL-1beta secretion, and normalized spontaneous in vitro apoptosis. This normalization was reversible by the addition of exogenous IL-1beta. CONCLUSION: This study demonstrates that outside-to-inside signaling through transmembrane TNF after ligation by infliximab inhibits constitutive NF-kappaB activation and suppresses spontaneous IL-1beta production by monocytes from patients with RA. Besides the induction of monocyte apoptosis, this inhibition could also contribute to the therapeutic effects observed during treatment with TNFalpha inhibitors.