Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Ann Surg ; 278(6): e1277-e1288, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154066

RESUMO

OBJECTIVE: Injured tissue predisposes the subject to local and systemic infection. We studied injury-induced immune dysfunction seeking novel means to reverse such predisposition. BACKGROUND: Injury mobilizes primitive "DANGER signals" [danger-associated molecular patterns (DAMPs)] activating innate immunocyte (neutrophils, PMN) signaling and function. Mitochondrial formyl peptides activate G -protein coupled receptors (GPCR) like formyl peptide receptor-1. Mitochondrial DNA and heme activate toll-like receptors (TLR9 and TLR2/4). GPCR kinases (GRKs) can regulate GPCR activation. METHODS: We studied human and mouse PMN signaling elicited by mitochondrial DAMPs (GPCR surface expression; protein phosphorylation, or acetylation; Ca 2+ flux) and antimicrobial functions [cytoskeletal reorganization, chemotaxis (CTX), phagocytosis, bacterial killing] in cellular systems and clinical injury samples. Predicted rescue therapies were assessed in cell systems and mouse injury-dependent pneumonia models. RESULTS: Mitochondrial formyl peptides activate GRK2, internalizing GPCRs and suppressing CTX. Mitochondrial DNA suppresses CTX, phagocytosis, and killing through TLR9 through a novel noncanonical mechanism that lacks GPCR endocytosis. Heme also activates GRK2. GRK2 inhibitors like paroxetine restore functions. GRK2 activation through TLR9 prevented actin reorganization, implicating histone deacetylases (HDACs). Actin polymerization, CTX, bacterial phagocytosis, and killing were also rescued, therefore, by the HDAC inhibitor valproate. Trauma repository PMN showed GRK2 activation and cortactin deacetylation, which varied with severity and was most marked in patients developing infections. Either GRK2 or HDAC inhibition prevented loss of mouse lung bacterial clearance, but only the combination rescued clearance when given postinjury. CONCLUSIONS: Tissue injury-derived DAMPs suppress antimicrobial immunity through canonical GRK2 activation and a novel TLR-activated GRK2-pathway impairing cytoskeletal organization. Simultaneous GRK2/HDAC inhibition rescues susceptibility to infection after tissue injury.


Assuntos
Anti-Infecciosos , Neutrófilos , Humanos , Camundongos , Animais , Neutrófilos/metabolismo , Actinas/metabolismo , Receptor Toll-Like 9/metabolismo , DNA Mitocondrial/metabolismo , Peptídeos/metabolismo , Heme/metabolismo
2.
Antioxidants (Basel) ; 12(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37237940

RESUMO

Heme is an iron-protoporphyrin complex with an essential physiologic function for all cells, especially for those in which heme is a key prosthetic group of proteins such as hemoglobin, myoglobin, and cytochromes of the mitochondria. However, it is also known that heme can participate in pro-oxidant and pro-inflammatory responses, leading to cytotoxicity in various tissues and organs such as the kidney, brain, heart, liver, and in immune cells. Indeed, heme, released as a result of tissue damage, can stimulate local and remote inflammatory reactions. These can initiate innate immune responses that, if left uncontrolled, can compound primary injuries and promote organ failure. In contrast, a cadre of heme receptors are arrayed on the plasma membrane that is designed either for heme import into the cell, or for the purpose of activating specific signaling pathways. Thus, free heme can serve either as a deleterious molecule, or one that can traffic and initiate highly specific cellular responses that are teleologically important for survival. Herein, we review heme metabolism and signaling pathways, including heme synthesis, degradation, and scavenging. We will focus on trauma and inflammatory diseases, including traumatic brain injury, trauma-related sepsis, cancer, and cardiovascular diseases where current work suggests that heme may be most important.

3.
J Trauma Acute Care Surg ; 94(2): 187-196, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36694330

RESUMO

INTRODUCTION: Multiple large clinical trauma trials have documented an increased susceptibility to infection after injury. Although neutrophils (polymorphonuclear leukocytes [PMNs]) were historically considered a homogeneous cell type, we hypothesized that injury could alter neutrophil heterogeneity and predispose to dysfunction. To explore whether trauma modifies PMN heterogeneity, we performed an observational mass-spectrometry-based cytometry study on total leukocytes and low-density PMNs found in the peripheral blood mononuclear cell fraction of leukocytes from healthy controls and trauma patients. METHODS: A total of 74 samples from 12 trauma patients, each sampled at 1 or more time points, and matched controls were fractionated and profiled by mass-spectrometry-based cytometry using a panel of 44 distinct markers. After deconvolution and conservative gating on neutrophils, data were analyzed using Seurat, followed by clustering of principal components. RESULTS: Eleven distinct neutrophil populations were resolved in control and trauma neutrophils based on differential protein surface marker expression. Trauma markedly altered the basal heterogeneity of neutrophil subgroups seen in the control samples, with loss of a dominant population of resting neutrophils marked by high expression of C3AR and low levels of CD63, CD64, and CD177 (cluster 1), and expansion of two alternative neutrophil populations, one of which is marked by high expression of CD177 with suppression of CD10, CD16, C3AR, CD63, and CD64 (cluster 6). Remarkably, following trauma, a substantially larger percentage of neutrophils sediment in the monocyte fraction. These low-density neutrophils bear markers of functional exhaustion and form a unique trauma-induced population (cluster 9) with markedly upregulated expression of active surface adhesion molecules (activated CD11b/CD18), with suppression of nearly all other surface markers, including receptors for formyl peptides, leukotrienes, chemokines, and complement. CONCLUSION: Circulating neutrophils demonstrate considerable evidence of functional heterogeneity that is markedly altered by trauma. Trauma induces evolution of a novel, exhausted, low-density neutrophil population with immunosuppressive features.


Assuntos
Antígenos CD18 , Neutrófilos , Humanos , Neutrófilos/metabolismo , Antígenos CD18/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos/metabolismo , Quimiocinas
4.
Thorax ; 78(2): 151-159, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35613855

RESUMO

RATIONALE: The increased mortality and morbidity seen in critically injured patients appears associated with systemic inflammatory response syndrome (SIRS) and immune dysfunction, which ultimately predisposes to infection. Mitochondria released by injury could generate danger molecules, for example, ATP, which in turn would be rapidly scavenged by ectonucleotidases, expressed on regulatory immune cells. OBJECTIVE: To determine the association between circulating mitochondria, purinergic signalling and immune dysfunction after trauma. METHODS: We tested the impact of hepatocyte-derived free mitochondria on blood-derived and lung-derived CD8 T cells in vitro and in experimental mouse models in vivo. In parallel, immune phenotypic analyses were conducted on blood-derived CD8 T cells obtained from trauma patients. RESULTS: Isolated intact mitochondria are functional and generate ATP ex vivo. Extracellular mitochondria perturb CD8+ T cells in co-culture, inducing select features of immune exhaustion in vitro. These effects are modulated by scavenging ATP, modelled by addition of apyrase in vitro. Injection of intact mitochondria into recipient mice markedly upregulates the ectonucleotidase CD39, and other immune checkpoint markers in circulating CD8+ T cells. We note that mice injected with mitochondria, prior to instilling bacteria into the lung, exhibit more severe lung injury, characterised by elevated neutrophil influx and by changes in CD8+ T cell cytotoxic capacity. Importantly, the development of SIRS in injured humans, is likewise associated with disordered purinergic signalling and CD8 T cell dysfunction. CONCLUSION: These studies in experimental models and in a cohort of trauma patients reveal important associations between extracellular mitochondria, aberrant purinergic signalling and immune dysfunction. These pathogenic factors with immune exhaustion are linked to SIRS and could be targeted therapeutically.


Assuntos
Antígenos CD , Linfócitos T CD8-Positivos , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Mitocôndrias , Síndrome de Resposta Inflamatória Sistêmica/metabolismo
5.
J Mol Biol ; 434(9): 167533, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35314146

RESUMO

The neutrophil NADPH oxidase produces both intracellular and extracellular reactive oxygen species (ROS). Although oxidase activity is essential for microbial killing, and ROS can act as signaling molecules in the inflammatory process, excessive extracellular ROS directly contributes to inflammatory tissue damage, as well as to cancer progression and immune dysregulation in the tumor microenvironment. How specific signaling pathways contribute to ROS localization is unclear. Here we used a systems pharmacology approach to identify the specific Class I PI3-K isoform p110ß, and PLD1, but not PLD2, as critical regulators of extracellular, but not intracellular ROS production in primary neutrophils. Combined crystallographic and molecular dynamics analysis of the PX domain of the oxidase component p47phox, which binds the lipid products of PI 3-K and PLD, was used to clarify the membrane-binding mechanism and guide the design of mutant mice whose p47phox is unable to bind 3-phosphorylated inositol phospholipids. Neutrophils from these K43A mutant animals were specifically deficient in extracellular, but not intracellular, ROS production, and showed increased dependency on signaling through the remaining PLD1 arm. These findings identify the PX domain of p47phox as a critical integrator of PLD1 and p110ß signaling for extracellular ROS production, and as a potential therapeutic target for modulating tissue damage and extracellular signaling during inflammation.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , NADPH Oxidases , Neutrófilos , Espécies Reativas de Oxigênio , Animais , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Ativação Enzimática , Inflamação , Camundongos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Neutrófilos/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
6.
J Trauma Acute Care Surg ; 92(2): 330-338, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34789698

RESUMO

BACKGROUND: Trauma increases susceptibility to secondary bacterial infections. The events suppressing antimicrobial immunity are unclear. Polymorphonuclear neutrophils (PMNs) migrate toward bacteria using chemotaxis, trap them in extracellular neutrophil extracellular traps, and kill them using respiratory burst (RB). We hypothesized that plasma and wound fluids from trauma patients alter PMN function. METHODS: Volunteer PMNs were incubated in plasma or wound fluids from trauma patients (days 0 and 1, days 2 and 3), and their functions were compared with PMNs incubated in volunteer plasma. Chemotaxis was assessed in transwells. Luminometry assessed total and intracellular RB responses to receptor-dependent and independent stimulants. Neutrophil extracellular trap formation was assessed using elastase assays. The role of tissue necrosis in creating functionally suppressive systemic PMN environments was assessed using a novel pig model where PMNs were incubated in uninjured pig plasma or plasma from pigs undergoing intraperitoneal instillation of liver slurry. RESULTS: Both plasma and wound fluids from trauma patients markedly suppress total PMN RB. Intracellular RB is unchanged, implicating suppression of extracellular RB. Wound fluids are more suppressive than plasma. Biofluids suppressed RB maximally early after injury and their effects decayed with time. Chemotaxis and neutrophil extracellular trap formation were suppressed by biofluids similarly. Lastly, plasma from pigs undergoing abdominal liver slurry instillation suppressed PMN RB, paralleling suppression by human trauma biofluids. CONCLUSION: Trauma plasma and wound fluids suppress RB and other key PMNs antimicrobial functions. Circulating suppressive signals can be derived from injured or necrotic tissue at wound sites, suggesting a key mechanism by which tissue injuries can put the host at risk for infection.


Assuntos
Neutrófilos/imunologia , Explosão Respiratória/imunologia , Ferimentos e Lesões/imunologia , Animais , Quimiotaxia , Exsudatos e Transudatos/imunologia , Humanos , Volume Plasmático/imunologia , Suínos
7.
Heart Lung Circ ; 31(3): 439-446, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34627673

RESUMO

BACKGROUND: Postoperative pneumonia is a major cause of morbidity and mortality following cardiac surgery. The inflammatory response to cardiac surgery has been widely studied, but specific mechanisms for postoperative pneumonia have not been determined. Tranexamic acid is renowned for its effect on bleeding but can also modulate inflammatory processes. Cardiac surgery is known to release mitochondrial DAMPs (mtDAMPs) and is linked to postoperative inflammation and atrial fibrillation. We speculated that mtDAMPs might be related to postoperative pneumonia and that this might be modulated by tranexamic acid. METHODS: Forty-one (41) patients from the Aspirin and Tranexamic Acid for Coronary Artery Surgery (ATACAS) trial were studied. Levels of mitochondrial DNA, matrix metallopeptidase 9 (MMP-9) and neutrophil elastase (NE) were determined in plasma preoperatively, at 24 and 72 hours post-surgery and correlated with clinical outcome. RESULTS: mtDNA was significantly elevated postoperatively in the placebo and tranexamic acid (TXA) groups. Neutrophil elastase increased immediately postoperatively and at 24 hours. MMP-9 was elevated in the placebo group early postoperatively and in the TXA group at the immediate postoperative time point and after 24 hours. Six (6) of the 41 (14.6%) patients subsequently developed pneumonia. mtDNA levels were significantly increased at the early postoperative period and the 24-hour time point in patients with pneumonia. CONCLUSIONS: Cardiac surgery releases mtDNA, increases MMP-9 and NE and this was not influenced by TXA. Inflammation postoperatively might be linked to pneumonia since mtDNA was further elevated in these patients. Due to the low number of individuals developing pneumonia, further studies are warranted to clearly identify whether TXA impacts on the inflammatory response in postoperative pneumonia.


Assuntos
Antifibrinolíticos , Pneumonia , Ácido Tranexâmico , Antifibrinolíticos/efeitos adversos , Perda Sanguínea Cirúrgica , Ponte de Artéria Coronária , DNA Mitocondrial/genética , Humanos , Elastase de Leucócito , Metaloproteinase 9 da Matriz , Pneumonia/etiologia , Ácido Tranexâmico/efeitos adversos , Resultado do Tratamento
8.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33888581

RESUMO

Secondary infections typically worsen outcomes of patients recovering from septic shock. Neutrophil [polymorphonuclear leukocytes (PMNs)] migration to secondarily inoculated sites may play a key role in inhibiting progression from local bacterial inoculation to secondary infection. Mitochondrial N-formyl peptide (mtFP) occupancy of formyl peptide receptor-1 (FPR1) has been shown to suppress PMN chemotaxis. Therefore, we studied the association between circulating mtFPs and the development of secondary infection in patients with septic shock. We collected clinical data and plasma samples from patients with septic shock admitted to the intensive care unit for longer than 72 h. Impacts of circulating nicotinamide adenine dinucleotide dehydrogenase subunit-6 (ND6) upon clinical outcomes were analyzed. Next, the role of ND6 in PMN chemotaxis was investigated using isolated human PMNs. Studying plasma samples from 97 patients with septic shock, we found that circulating ND6 levels at admission were independently and highly associated with the development of secondary infection (odds ratio = 30.317, 95% CI: 2.904 to 316.407, P = 0.004) and increased 90-d mortality (odds ratio = 1.572, 95% CI: 1.002 to 2.465, P = 0.049). In ex vivo experiments, ND6 pretreatment suppressed FPR1-mediated PMN chemotactic responses to bacterial peptides in the presence of multiple cytokines and chemokines, despite increased nondirectional PMN movements. Circulating mtFPs appear to contribute to the development of secondary infection and increased mortality in patients with septic shock who survive their early hyperinflammatory phase. The increased susceptibility to secondary infection is probably partly mediated by the suppression of FPR1-mediated PMN chemotaxis to secondary infected sites.


Assuntos
Infecção Hospitalar/etiologia , NADH Desidrogenase/metabolismo , Choque Séptico/complicações , Idoso , Idoso de 80 Anos ou mais , Fatores Quimiotáticos/metabolismo , Quimiotaxia , Infecção Hospitalar/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , NADH Desidrogenase/fisiologia , Ativação de Neutrófilo , Neutrófilos/metabolismo , Peptídeos/metabolismo , Receptores de Formil Peptídeo/metabolismo , Choque Séptico/metabolismo , Choque Séptico/fisiopatologia
9.
J Trauma Acute Care Surg ; 90(1): 46-53, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021603

RESUMO

BACKGROUND: Trauma and sepsis both increase the risk for secondary infections. Injury mobilizes mitochondrial (MT) danger-associated molecular patterns (mtDAMPs) directly from cellular necrosis. It is unknown, however, whether sepsis can cause active MT release and whether mtDAMPs released by sepsis might affect innate immunity. METHODS: Mitochondrial release from human monocytes (Mo) was studied after LPS stimulation using electron microscopy and using fluorescent video-microscopy of adherent Mo using Mito-Tracker Green (MTG) dye. Release of MTG+ microparticles was studied using flow cytometry after bacterial stimulation by size exclusion chromatography of supernatants with polymerase chain reaction (PCR) for mitochondrial DNA (mtDNA). Human neutrophil (PMN), chemotaxis, and respiratory burst were studied after PMN incubation with mtDNA. RESULTS: LPS caused Mo to release mtDAMPs. Electron microscopy showed microparticles containing MT. mtDNA was present both in microvesicles and exosomes as shown by PCR of the relevant size exclusion chromatography bands. In functional studies, PMN incubation with mtDNA suppressed chemotaxis in a dose-dependent manner, which was reversed by chloroquine, suggesting an endosomal, toll-like receptor-9-dependent mechanism. In contrast, PMN respiratory burst was unaffected by mtDNA. CONCLUSION: In addition to passive release of mtDAMPs by traumatic cellular disruption, inflammatory and infectious stimuli cause active mtDAMP release via microparticles. mtDNA thus released can have effects on PMN that may suppress antimicrobial function. mtDAMP-mediated "feed-forward" mechanisms may modulate immune responses and potentially be generalizable to other forms of inflammation. Where they cause immune dysfunction the effects can be mitigated if the pathways by which the mtDAMPs act are defined. In this case, the endosomal inhibitor chloroquine is benign and well tolerated. Thus, it may warrant study as a prophylactic antiinfective after injury or prior sepsis.


Assuntos
Alarminas/metabolismo , Quimiotaxia , Exocitose , Mitocôndrias/metabolismo , Monócitos/metabolismo , Neutrófilos/metabolismo , Sepse/metabolismo , Cromatografia em Gel , Citometria de Fluxo , Humanos , Microscopia Eletrônica , Microscopia de Fluorescência , Mitocôndrias/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo
10.
Ann Surg ; 272(4): 604-610, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32932316

RESUMO

OBJECTIVES: Sepsis and sterile both release "danger signals' that induce the systemic inflammatory response syndrome (SIRS). So differentiating infection from SIRS can be challenging. Precision diagnostic assays could limit unnecessary antibiotic use, improving outcomes. METHODS: After surveying human leukocyte cytokine production responses to sterile damage-associated molecular patterns (DAMPs), bacterial pathogen-associated molecular patterns, and bacteria we created a multiplex assay for 31 cytokines. We then studied plasma from patients with bacteremia, septic shock, "severe sepsis," or trauma (ISS ≥15 with circulating DAMPs) as well as controls. Infections were adjudicated based on post-hospitalization review. Plasma was studied in infection and injury using univariate and multivariate means to determine how such multiplex assays could best distinguish infective from noninfective SIRS. RESULTS: Infected patients had high plasma interleukin (IL)-6, IL-1α, and triggering receptor expressed on myeloid cells-1 (TREM-1) compared to controls [false discovery rates (FDR) <0.01, <0.01, <0.0001]. Conversely, injury suppressed many mediators including MDC (FDR <0.0001), TREM-1 (FDR <0.001), IP-10 (FDR <0.01), MCP-3 (FDR <0.05), FLT3L (FDR <0.05), Tweak, (FDR <0.05), GRO-α (FDR <0.05), and ENA-78 (FDR <0.05). In univariate studies, analyte overlap between clinical groups prevented clinical relevance. Multivariate models discriminated injury and infection much better, with the 2-group random-forest model classifying 11/11 injury and 28/29 infection patients correctly in out-of-bag validation. CONCLUSIONS: Circulating cytokines in traumatic SIRS differ markedly from those in health or sepsis. Variability limits the accuracy of single-mediator assays but machine learning based on multiplexed plasma assays revealed distinct patterns in sepsis- and injury-related SIRS. Defining biomarker release patterns that distinguish specific SIRS populations might allow decreased antibiotic use in those clinical situations. Large prospective studies are needed to validate and operationalize this approach.


Assuntos
Citocinas/sangue , Sepse/sangue , Sepse/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Relatórios Anuais como Assunto , Diagnóstico Diferencial , Cirurgia Geral , Testes Hematológicos/métodos , Humanos , Estudos Prospectivos , Sepse/imunologia , Sociedades Médicas , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Estados Unidos
11.
Crit Care Med ; 48(2): e123-e132, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31939811

RESUMO

OBJECTIVES: Trauma predisposes to systemic sterile inflammation (systemic inflammatory response syndrome) as well as infection, but the mechanisms linking injury to infection are poorly understood. Mitochondrial debris contains formyl peptides. These bind formyl peptide receptor-1, trafficking neutrophils to wounds, initiating systemic inflammatory response syndrome, and wound healing. Bacterial formyl peptides, however, also attract neutrophils via formyl peptide receptor-1. Thus, mitochondrial formyl peptides might suppress neutrophils antimicrobial function. Also, formyl peptide receptor-1 blockade used to mitigate systemic inflammatory response syndrome might predispose to sepsis. We examined how mitochondrial formyl peptides impact neutrophils functions contributing to antimicrobial responses and how formyl peptide receptor-1 antagonists affect those functions. DESIGN: Prospective study of human and murine neutrophils and clinical cohort analysis. SETTING: University research laboratory and level 1 trauma center. PATIENTS: Trauma patients, volunteer controls. ANIMAL SUBJECTS: C57Bl/6, formyl peptide receptor-1, and formyl peptide receptor-2 knockout mice. INTERVENTIONS: Human and murine neutrophils functions were activated with autologous mitochondrial debris, mitochondrial formyl peptides, or bacterial formyl peptides followed by chemokines or leukotrienes. The experiments were repeated using formyl peptide receptor-1 antagonist cyclosporin H, "designer" human formyl peptide receptor-1 antagonists (POL7178 and POL7200), or anti-formyl peptide receptor-1 antibodies. Mouse injury/lung infection model was used to evaluate effect of formyl peptide receptor-1 inhibition. MEASUREMENTS AND MAIN RESULTS: Human neutrophils cytosolic calcium, chemotaxis, reactive oxygen species production, and phagocytosis were studied before and after exposure to mitochondrial debris, mitochondrial formyl peptides, and bacterial formyl peptides. Mitochondrial formyl peptide and bacterial formyl peptides had similar effects on neutrophils. Responses to chemokines and leukotrienes were suppressed by prior exposure to formyl peptides. POL7200 and POL7178 were specific antagonists of human formyl peptide receptor-1 and more effective than cyclosporin H or anti-formyl peptide receptor-1 antibodies. Formyl peptides inhibited mouse neutrophils responses to chemokines only if formyl peptide receptor-1 was present. Formyl peptide receptor-1 blockade did not inhibit neutrophils bacterial phagocytosis or reactive oxygen species production. Cyclosporin H increased bacterial clearance in lungs after injury. CONCLUSIONS: Formyl peptides both activate and desensitize neutrophils. Formyl peptide receptor-1 blockade prevents desensitization, potentially both diminishing systemic inflammatory response syndrome and protecting the host against secondary infection after tissue trauma or primary infection.


Assuntos
Proteínas Mitocondriais/imunologia , Ativação de Neutrófilo/imunologia , Receptores de Formil Peptídeo/antagonistas & inibidores , Animais , Ciclosporina/farmacologia , Humanos , Lesão Pulmonar/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Infecções Respiratórias/fisiopatologia
13.
Br J Cancer ; 120(2): 207-217, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30518816

RESUMO

BACKGROUND: Advanced cancer causes necrosis and releases damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs activate neutrophils, including generation of neutrophil extracellular traps (NETs), which are injurious, thrombogenic, and implicated in metastasis. We hypothesised that extracellular mitochondrial DNA (mtDNA) in ascites from patients with epithelial ovarian cancer (EOC) would correlate with worse outcomes. METHODS: Banked ascites supernatants from patients with newly diagnosed advanced EOC were analysed for mtDNA, neutrophil elastase, and activation of healthy donor neutrophils and platelets. TCGA was mined for expression of SELP and ELANE. RESULTS: The highest quartile of ascites mtDNA correlated with reduced progression-free survival (PFS) and a higher likelihood of disease progression within 12-months following primary surgery (n = 68, log-rank, p = 0.0178). NETs were detected in resected tumours. Ascites supernatants chemoattracted neutrophils, induced NETs, and activated platelets. Ascites exposure rendered neutrophils suppressive, based on abrogation of ex vivo stimulated T cell proliferation. Increased SELP mRNA expression correlated with worse overall survival (n = 302, Cox model, p = 0.02). CONCLUSION: In this single-centre retrospective analysis, ascites mtDNA correlated with worse PFS in advanced EOC. Mitochondrial and other DAMPs in ascites may activate neutrophil and platelet responses that facilitate metastasis and obstruct anti-tumour immunity. These pathways are potential prognostic markers and therapeutic targets.


Assuntos
Alarminas/genética , Carcinoma Epitelial do Ovário/genética , DNA Mitocondrial/genética , Armadilhas Extracelulares/genética , Idoso , Ascite/genética , Ascite/patologia , Plaquetas/metabolismo , Carcinoma Epitelial do Ovário/patologia , Armadilhas Extracelulares/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Elastase de Leucócito/genética , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Neutrófilos/metabolismo , Neutrófilos/patologia , Intervalo Livre de Progressão , Microambiente Tumoral/genética
14.
J Trauma Acute Care Surg ; 85(5): 936-943, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29787548

RESUMO

BACKGROUND: Trauma causes inflammation by releasing mitochondria that act as Danger-Associated Molecular Patterns (DAMPs). Trauma also increases susceptibility to infection. Human mitochondria contain 13 N-formyl peptides (mtFPs). We studied whether mtFPs released into plasma by clinical injury induce neutrophil (PMN) inflammatory responses, whether their potency reflects their similarity to bacterial FPs and how their presence at clinically relevant concentration affects PMN function. METHODS: N-terminal sequences of the 13 mtFPs were synthesized. Changes in human PMN cytosolic Ca concentration ([Ca]i) and chemotactic responses to mtFPs were studied. Sequence similarity of mtFPs to the canonical bacterial peptide f-Met-Leu-Phe (fMLF/fMLP) was studied using the BLOcks SUbstitution Matrix 62 (BLOSUM 62) system. The presence of mtFPs in plasma of trauma patients was assayed by Enzyme-linked immunosorbent assay (ELISA). The effects of the most potent mtFP (ND6) on PMN signaling and function were then studied at ambient clinical concentrations by serial exposure of native PMN to ND6, chemokines and leukotrienes. RESULTS: Five mtFPs (ND6, ND3, ND4, ND5, and Cox 1) induced [Ca]i flux and chemotaxis in descending order of potency. Evolutionary similarity to fMLF predicted [Ca]i flux and chemotactic potency linearly (R = 0.97, R = 0.95). Chemoattractant potency was also linearly related to [Ca]i flux induction (R = 0.92). Active mtFPs appear to circulate in significant amounts immediately after trauma and persist through the first week. The most active mtFP, ND6, suppresses responses to physiologic alveolar chemoattractants (CXCL-1, leukotriene B4) as well as to fMLF where CXCL-1 and leukotriene B4 do not suppress N-formyl peptide receptor (FPR)-1 responses to mtFPs. Prior FPR-1 inhibition rescues PMN from heterologous suppression of CXCR-1 and BLT-1 by mtFPs. CONCLUSION: The data suggest mtFPs released by injured tissue may attract PMN to trauma sites while suppressing PMN responses to other chemoattractants. Inhibition of mtFP-FPR1 interactions might increase PMN recruitment to lung bacterial inoculation after trauma. These findings suggest new paradigms for preventing infections after trauma. LEVEL OF EVIDENCE: Therapeutic, Level IV.


Assuntos
Quimiotaxia/efeitos dos fármacos , Neutrófilos/fisiologia , Peptídeos/sangue , Peptídeos/farmacologia , Ferimentos e Lesões/sangue , Cálcio/metabolismo , Células Cultivadas , Quimiocina CXCL1/farmacologia , Biologia Computacional , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Citosol/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Evolução Molecular , Humanos , Leucotrieno B4/farmacologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , N-Formilmetionina Leucil-Fenilalanina/química , N-Formilmetionina Leucil-Fenilalanina/farmacologia , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Peptídeos/química , Peptídeos/genética , Receptores de Formil Peptídeo/antagonistas & inibidores , Receptores de Formil Peptídeo/metabolismo , Transdução de Sinais
16.
J Trauma Acute Care Surg ; 85(5): 1007-1015, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29659472

RESUMO

This is a recommended management algorithm from the Western Trauma Association addressing the management of adult patients with abdominal stab wounds. Because there is a paucity of published prospective randomized clinical trials that have generated Class I data, these recommendations are based primarily on published observational studies and expert opinion of Western Trauma Association members. The algorithm and accompanying comments represent a safe and sensible approach that can be followed at most trauma centers. We recognize that there will be patient, personnel, institutional, and situational factors that may warrant or require deviation from the recommended algorithm. We encourage institutions to use this as a guideline to develop their own local protocols.


Assuntos
Traumatismos Abdominais/terapia , Algoritmos , Diafragma/lesões , Ferimentos Perfurantes/terapia , Traumatismos Abdominais/diagnóstico por imagem , Traumatismos Abdominais/etiologia , Tomada de Decisão Clínica , Humanos , Exame Físico , Tomografia Computadorizada por Raios X , Ferimentos Perfurantes/complicações , Ferimentos Perfurantes/diagnóstico por imagem
17.
Proc Natl Acad Sci U S A ; 115(10): E2302-E2310, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463714

RESUMO

Ischemia reperfusion injury (IRI) is the predominant tissue insult associated with organ transplantation. Treatment with carbon monoxide (CO) modulates the innate immune response associated with IRI and accelerates tissue recovery. The mechanism has been primarily descriptive and ascribed to the ability of CO to influence inflammation, cell death, and repair. In a model of bilateral kidney IRI in mice, we elucidate an intricate relationship between CO and purinergic signaling involving increased CD39 ectonucleotidase expression, decreased expression of Adora1, with concomitant increased expression of Adora2a/2b. This response is linked to a >20-fold increase in expression of the circadian rhythm protein Period 2 (Per2) and a fivefold increase in serum erythropoietin (EPO), both of which contribute to abrogation of kidney IRI. CO is ineffective against IRI in Cd39-/- and Per2-/- mice or in the presence of a neutralizing antibody to EPO. Collectively, these data elucidate a cellular signaling mechanism whereby CO modulates purinergic responses and circadian rhythm to protect against injury. Moreover, these effects involve CD39- and adenosinergic-dependent stabilization of Per2. As CO also increases serum EPO levels in human volunteers, these findings continue to support therapeutic use of CO to treat IRI in association with organ transplantation, stroke, and myocardial infarction.


Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Monóxido de Carbono/administração & dosagem , Nefropatias/tratamento farmacológico , Rim/efeitos dos fármacos , Proteínas Circadianas Period/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Antígenos CD/genética , Apirase/genética , Modelos Animais de Doenças , Humanos , Rim/irrigação sanguínea , Rim/metabolismo , Rim/fisiopatologia , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Circadianas Period/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo
18.
Heart Lung Circ ; 27(1): 122-129, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28487062

RESUMO

BACKGROUND: Atrial fibrillation (AF) is the most frequent complication of surgery performed on cardiopulmonary bypass (CPB) and recent work associates CPB with postoperative inflammation. We have shown that all tissue injury releases mitochondrial damage associated molecular patterns (mtDAMPs) including mitochondrial DNA (mtDNA). This can act as a direct, early activator of neutrophils (PMN), eliciting a systemic inflammatory response syndrome (SIRS) while suppressing PMN function. Neutrophil Extracellular Traps (NETs) are crucial to host defence. They carry out NETosis wherein webs of granule proteins and chromatin trap and kill bacteria. We hypothesised that surgery performed on CPB releases mtDAMPs into the circulation. Molecular patterns thus mobilised during CPB might then participate in the pathogenesis of SIRS and predict postoperative complications like AF [1]. METHODS: We prospectively studied 16 patients undergoing elective operations on CPB. Blood was sampled preoperatively, at the end of CPB and on days 1-2 postoperatively. Plasma samples were analysed for mtDNA. Neutrophil IL-6 gene expression was studied to assess induction of SIRS. Neutrophils were also assayed for the presence of neutrophil extracellular traps (NETs/NETosis). These biologic findings were then correlated to clinical data and compared in patients with and without postoperative AF (POAF). RESULTS: Mitochondrial DNA was significantly elevated following CPB (six-fold increase post-CPB, p=0.008 and five-fold increase days 1-2, p=0.02). Patients with POAF showed greater increases in mtDNA post-CPB than those without. Postoperative AF was seen in all patients with a ≥2-fold increase of mtDNA (p=0.037 vs. <2-fold). Neutrophil IL-6 gene transcription increased postoperatively demonstrating SIRS that was greatest days 1-2 (p=0.039). Neutrophil extracellular trap (NET) formation was markedly suppressed in the post-CPB state. CONCLUSION: Mitochondrial DNA is released by CPB surgery and is associated with POAF. IL-6 gene expression increases after CPB, demonstrating the evolution of postoperative SIRS. Lastly, cardiac surgery on CPB also suppressed PMN NETosis. Taken together, our data suggest that mtDNA released during surgery on CPB, may be involved in the pathogenesis of SIRS and related postoperative inflammatory events like POAF and infections. Mitochondrial DNA may therefore prove to be an early biomarker for postoperative complications with the degree of association to be determined in appropriately sized studies. If mtDNA is directly involved in cardiac inflammation, mtDNA-induced toll-like receptor-9 (TLR9) signalling could also be targeted therapeutically.


Assuntos
Fibrilação Atrial/sangue , Ponte Cardiopulmonar/efeitos adversos , DNA Mitocondrial/sangue , Mitocôndrias/genética , Complicações Pós-Operatórias , Idoso , Fibrilação Atrial/genética , Biomarcadores/sangue , DNA Mitocondrial/genética , Feminino , Cardiopatias/cirurgia , Humanos , Masculino , Mitocôndrias/metabolismo , Reação em Cadeia da Polimerase , Estudos Prospectivos
20.
J Trauma Acute Care Surg ; 82(5): 853-860, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28431414

RESUMO

BACKGROUND: Nosocomial pneumonias are common in trauma patients and so interventions to prevent and treat nosocomial pneumonia may improve outcomes. Our prior work strongly suggests that tissue injury predisposes to infections like nosocomial pneumonia because mitochondrial debris originating from injured cells contains damage-associated molecular patterns that can reduce neutrophil (PMN) migration into the airway and diminish PMN function in response to bacterial inoculation of the airway. This suggested that putting exogenous "normal" PMN into the airway might be beneficial. METHODS: Postinjury pneumonia (PNA) commonly arises in two groups, early, community-acquired PNA (CAP) and later hospital-acquired PNA (HAP). Posttraumatic early-onset CAP and late-onset HAP were modeled in CD-1 mice using Staphylococcus aureus or Pseudomonas aeruginosa instilled intratracheal (i.t.) at clinically relevant times with or without extrapulmonary injuries mimicked by an intraperitoneal application of mitochondrial damage-associated molecular patterns. We applied bone marrow-derived PMN (BM-PMN) intratracheally to assess their effect on bacterial clearance in the lung. RESULTS: BM-PMN instillation i.t. had no untoward clinical effects on recipient animals. In both the early/CAP and late/HAP models, clearance of the bacterial inoculum from the lung was suppressed by mitochondrial debris and restored to uninjured levels by i.t. instillation of exogenous BM-PMN. Furthermore, PMN instillation cleared the inoculum of P. aeruginosa that could not be cleared by uninjured mice. Instillation of PMN into the lung, even across strains (CD-1 vs. C57BL/6) had no injurious effect. CONCLUSION: These initial studies suggest PMN instillation (i.t.) is worthy of further study as a potential adjunctive therapy aimed at decreasing the morbidity of lung infections in trauma patients. Moreover, PMN instillation (i.t.) may represent a unique means of preventing or treating pneumonia after serious injury that is completely independent of the need for antibiotic use.


Assuntos
Infecção Hospitalar/prevenção & controle , Lesão Pulmonar/complicações , Neutrófilos/transplante , Pneumonia Bacteriana/prevenção & controle , Animais , Infecção Hospitalar/etiologia , Camundongos , Pneumonia Bacteriana/etiologia , Pneumonia Estafilocócica/etiologia , Pneumonia Estafilocócica/prevenção & controle , Infecções por Pseudomonas/etiologia , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa , Staphylococcus aureus , Traqueia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA