Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 27(18): 3257-3271, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29917075

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) segregate with familial Parkinson's disease (PD) and genetic variation around LRRK2 contributes to risk of sporadic disease. Although knockout (KO) of Lrrk2 or knock-in of pathogenic mutations into the mouse germline does not result in a PD phenotype, several defects have been reported in the kidneys of Lrrk2 KO mice. To understand LRRK2 function in vivo, we used an unbiased approach to determine which protein pathways are affected in LRRK2 KO kidneys. We nominated changes in cytoskeletal-associated proteins, lysosomal proteases, proteins involved in vesicular trafficking and in control of protein translation. Changes were not seen in mice expressing the pathogenic G2019S LRRK2 mutation. Using cultured epithelial kidney cells, we replicated the accumulation of lysosomal proteases and demonstrated changes in subcellular distribution of the cation-independent mannose-6-phosphate receptor. These results show that loss of LRRK2 leads to co-ordinated responses in protein translation and trafficking and argue against a dominant negative role for the G2019S mutation.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Biossíntese de Proteínas/genética , Proteômica , Animais , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Knockout , Mutação , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fenótipo , Proteólise , Receptor IGF Tipo 2/genética , Transdução de Sinais
2.
J Neurochem ; 130(6): 839-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24832775

RESUMO

The oxidation of a key cysteine residue (Cys106) in the parkinsonism-associated protein DJ-1 regulates its ability to protect against oxidative stress and mitochondrial damage. Cys106 interacts with a neighboring protonated Glu18 residue, stabilizing the Cys106-SO2 (-) (sulfinic acid) form of DJ-1. To study this important post-translational modification, we previously designed several Glu18 mutations (E18N, E18D, E18Q) that alter the oxidative propensity of Cys106. However, recent results suggest these Glu18 mutations cause loss of DJ-1 dimerization, which would severely compromise the protein's function. The purpose of this study was to conclusively determine the oligomerization state of these mutants using X-ray crystallography, NMR spectroscopy, thermal stability analysis, circular dichroism spectroscopy, sedimentation equilibrium ultracentrifugation, and cross-linking. We found that all of the Glu18 DJ-1 mutants were dimeric. Thiol cross-linking indicates that these mutant dimers are more flexible than the wild-type protein and can form multiple cross-linked dimeric species due to the transient exposure of cysteine residues that are inaccessible in the wild-type protein. The enhanced flexibility of Glu18 DJ-1 mutants provides a parsimonious explanation for their lower observed cross-linking efficiency in cells. In addition, thiol cross-linkers may have an underappreciated value as qualitative probes of protein conformational flexibility. DJ-1 is a homodimeric protein that protects cells against oxidative stress. Designed mutations that influence the regulatory oxidation of a key cysteine residue have recently been proposed to disrupt DJ-1 dimerization. We use cysteine cross-linking and various biophysical techniques to show that these DJ-1 mutants form dimers with increased conformational flexibility.


Assuntos
Reagentes de Ligações Cruzadas/química , Cisteína/química , Ácido Glutâmico/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Mutação/genética , Proteínas Oncogênicas/química , Algoritmos , Dicroísmo Circular , Cristalização , Dimerização , Ácido Glutâmico/genética , Células HEK293 , Temperatura Alta , Humanos , Indicadores e Reagentes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Espectroscopia de Ressonância Magnética , Peso Molecular , Isótopos de Nitrogênio , Proteínas Oncogênicas/genética , Oxirredução , Conformação Proteica , Proteína Desglicase DJ-1 , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Solventes , Ultracentrifugação
3.
Proc Natl Acad Sci U S A ; 111(7): 2626-31, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24510904

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause inherited Parkinson disease (PD), and common variants around LRRK2 are a risk factor for sporadic PD. Using protein-protein interaction arrays, we identified BCL2-associated athanogene 5, Rab7L1 (RAB7, member RAS oncogene family-like 1), and Cyclin-G-associated kinase as binding partners of LRRK2. The latter two genes are candidate genes for risk for sporadic PD identified by genome-wide association studies. These proteins form a complex that promotes clearance of Golgi-derived vesicles through the autophagy-lysosome system both in vitro and in vivo. We propose that three different genes for PD have a common biological function. More generally, data integration from multiple unbiased screens can provide insight into human disease mechanisms.


Assuntos
Loci Gênicos/genética , Predisposição Genética para Doença/genética , Complexos Multiproteicos/metabolismo , Doença de Parkinson/enzimologia , Mapeamento de Interação de Proteínas/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Análise de Variância , Western Blotting , Encéfalo/metabolismo , Fracionamento Celular , Primers do DNA/genética , Estudo de Associação Genômica Ampla/métodos , Complexo de Golgi/ultraestrutura , Células HEK293 , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Espectrometria de Massas , Microscopia Confocal , Complexos Multiproteicos/genética , Plasmídeos/genética , Proteínas Serina-Treonina Quinases/genética , Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
4.
Free Radic Biol Med ; 65: 419-427, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23816523

RESUMO

Oxidative stress and mitochondrial dysfunction are known to contribute to the pathogenesis of Parkinson's disease. Dopaminergic neurons may be more sensitive to these stressors because they contain dopamine (DA), a molecule that oxidizes to the electrophilic dopamine quinone (DAQ) which can covalently bind nucleophilic amino acid residues such as cysteine. The identification of proteins that are sensitive to covalent modification and functional alteration by DAQ is of great interest. We have hypothesized that selenoproteins, which contain a highly nucleophilic selenocysteine residue and often play vital roles in the maintenance of neuronal viability, are likely targets for the DAQ. Here we report the findings of our studies on the effect of DA oxidation and DAQ on the mitochondrial antioxidant selenoprotein glutathione peroxidase 4 (GPx4). Purified GPx4 could be covalently modified by DAQ, and the addition of DAQ to rat testes lysate resulted in dose-dependent decreases in GPx4 activity and monomeric protein levels. Exposing intact rat brain mitochondria to DAQ resulted in similar decreases in GPx4 activity and monomeric protein levels as well as detection of multiple forms of DA-conjugated GPx4 protein. Evidence of both GPx4 degradation and polymerization was observed following DAQ exposure. Finally, we observed a dose-dependent loss of mitochondrial GPx4 in differentiated PC12 cells treated with dopamine. Our findings suggest that a decrease in mitochondrial GPx4 monomer and a functional loss of activity may be a contributing factor to the vulnerability of dopaminergic neurons in Parkinson's disease.


Assuntos
Dopamina/análogos & derivados , Neurônios Dopaminérgicos/metabolismo , Glutationa Peroxidase/metabolismo , Animais , Western Blotting , Dopamina/metabolismo , Técnicas In Vitro , Células PC12 , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ratos
6.
Autophagy ; 6(8): 1090-106, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20890124

RESUMO

Mitochondria sustain damage with aging, and the resulting mitochondrial dysfunction has been implicated in a number of diseases including Parkinson disease. We recently demonstrated that the E3 ubiquitin ligase Parkin, which is linked to recessive forms of parkinsonism, causes a dramatic increase in mitophagy and a change in mitochondrial distribution, following its translocation from the cytosol to mitochondria. Investigating how Parkin induces these changes may offer insight into the mechanisms that lead to the sequestration and elimination of damaged mitochondria. We report that following Parkin's translocation from the cytosol to mitochondria, Parkin (but not a pathogenic mutant) promotes the K63-linked polyubiquitination of mitochondrial substrate(s) and recruits the ubiquitin- and LC3-binding protein, p62/SQSTM1, to mitochondria. After its recruitment, p62/SQSTM1 mediates the aggregation of dysfunctional mitochondria through polymerization via its PB1 domain, in a manner analogous to its aggregation of polyubiquitinated proteins. Surprisingly and in contrast to what has been recently reported for ubiquitin-induced pexophagy and xenophagy, p62 appears to be dispensable for mitophagy. Similarly, mitochondrial-anchored ubiquitin is sufficient to recruit p62 and promote mitochondrial clustering, but does not promote mitophagy. Although VDAC1 (but not VDAC2) is ubiquitinated following mitochondrial depolarization, we find VDAC1 cannot fully account for the mitochondrial K63-linked ubiquitin immunoreactivity observed following depolarization, as it is also observed in VDAC1/3-/- mouse embryonic fibroblasts. Additionally, we find VDAC1 and VDAC3 are dispensable for the recruitment of p62, mitochondrial clustering and mitophagy. These results demonstrate that mitochondria are aggregated by p62, following its recruitment by Parkin in a VDAC1-independent manner. They also suggest that proteins other than p62 are likely required for mitophagy downstream of Parkin substrates other than VDAC1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Proteínas de Choque Térmico/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Sequência de Aminoácidos , Animais , Células HeLa , Humanos , Lisina/metabolismo , Camundongos , Microscopia Confocal , Microtúbulos/metabolismo , Membranas Mitocondriais/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Poliubiquitina/metabolismo , Estrutura Terciária de Proteína , Interferência de RNA , Proteína Sequestossoma-1 , Relação Estrutura-Atividade , Ubiquitinação , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 2 Dependente de Voltagem/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA