Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Genet Med ; 23(12): 2378-2385, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34272483

RESUMO

PURPOSE: Infantile Caffey disease is a rare disorder characterized by acute inflammation with subperiosteal new bone formation, associated with fever, pain, and swelling of the overlying soft tissue. Symptoms arise within the first weeks after birth and spontaneously resolve before the age of two years. Many, but not all, affected individuals carry the heterozygous pathogenic COL1A1 variant (c.3040C>T, p.(Arg1014Cys)). METHODS: We sequenced COL1A1 in 28 families with a suspicion of Caffey disease and performed ultrastructural, immunocytochemical, and biochemical collagen studies on patient skin biopsies. RESULTS: We identified the p.(Arg1014Cys) variant in 23 families and discovered a novel heterozygous pathogenic COL1A1 variant (c.2752C>T, p.(Arg918Cys)) in five. Both arginine to cysteine substitutions are located in the triple helical domain of the proα1(I) procollagen chain. Dermal fibroblasts (one patient with p.(Arg1014Cys) and one with p.(Arg918Cys)) produced molecules with disulfide-linked proα1(I) chains, which were secreted only with p.(Arg1014Cys). No intracellular accumulation of type I procollagen was detected. The dermis revealed mild ultrastructural abnormalities in collagen fibril diameter and packing. CONCLUSION: The discovery of this novel pathogenic variant expands the limited spectrum of arginine to cysteine substitutions in type I procollagen. Furthermore, it confirms allelic heterogeneity in Caffey disease and impacts its molecular confirmation.


Assuntos
Cadeia alfa 1 do Colágeno Tipo I/genética , Cisteína , Hiperostose Cortical Congênita , Arginina/genética , Pré-Escolar , Colágeno Tipo I , Cisteína/genética , Humanos , Mutação , Pró-Colágeno/genética
2.
Transfus Med Hemother ; 48(1): 48-59, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33708052

RESUMO

BACKGROUND/AIMS: Extracellular vesicles (EVs), including microvesicles and exosomes, deliver bioactive cargo mediating intercellular communication in physiological and pathological conditions. EVs are increasingly investigated as therapeutic agents and targets, but also as disease biomarkers. However, a definite consensus regarding EV isolation methods is lacking, which makes it intricate to standardize research practices and eventually reach a desirable level of data comparability. In our study, we performed an inter-laboratory comparison of EV isolation based on a differential ultracentrifugation protocol carried out in 4 laboratories in 2 independent rounds of isolation. METHODS: Conditioned medium of colorectal cancer cells was prepared and pooled by 1 person and distributed to each of the participating laboratories for isolation according to a pre-defined protocol. After EV isolation in each laboratory, quantification and characterization of isolated EVs was collectively done by 1 person having the highest expertise in the respective test method: Western blot, flow cytometry (fluorescence-activated cell sorting [FACS], nanoparticle tracking analysis (NTA), and transmission electron microscopy (TEM). RESULTS: EVs were visualized with TEM, presenting similar cup-shaped and spherical morphology and sizes ranging from 30 to 150 nm. NTA results showed similar size ranges of particles in both isolation rounds. EV preparations showed high purity by the expression of EV marker proteins CD9, CD63, CD81, Alix, and TSG101, and the lack of calnexin. FACS analysis of EVs revealed intense staining for CD63 and CD81 but lower levels for CD9 and TSG101. Preparations from 1 laboratory presented significantly lower particle numbers (p < 0.0001), most probably related to increased processing time. However, even when standardizing processing time, particle yields still differed significantly between groups, indicating inter-laboratory differences in the efficiency of EV isolation. Importantly, no relation was observed between centrifugation speed/k-factor and EV yield. CONCLUSIONS: Our findings demonstrate that quantitative differences in EV yield might be due to equipment- and operator-dependent technical variability in ultracentrifugation-based EV isolation. Furthermore, our study emphasizes the need to standardize technical parameters such as the exact run speed and k-factor in order to transfer protocols between different laboratories. This hints at substantial inter-laboratory biases that should be assessed in multi-centric studies.

3.
J Invest Dermatol ; 141(4): 883-893.e6, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32946877

RESUMO

Dystrophic epidermolysis bullosa (DEB) is a blistering skin disease caused by mutations in the gene COL7A1 encoding collagen VII. DEB can be inherited as recessive DEB (RDEB) or dominant DEB (DDEB) and is associated with a high wound burden. Perpetual cycles of wounding and healing drive fibrosis in DDEB and RDEB, as well as the formation of a tumor-permissive microenvironment. Prolonging wound-free episodes by improving the quality of wound healing would therefore confer substantial benefit for individuals with DEB. The collagenous domain of collagen VII is encoded by 82 in-frame exons, which makes splice-modulation therapies attractive for DEB. Indeed, antisense oligonucleotide-based exon skipping has shown promise for RDEB. However, the suitability of antisense oligonucleotides for treatment of DDEB remains unexplored. Here, we developed QR-313, a clinically applicable, potent antisense oligonucleotide specifically targeting exon 73. We show the feasibility of topical delivery of QR-313 in a carbomer-composed gel for treatment of wounds to restore collagen VII abundance in human RDEB skin. Our data reveal that QR-313 also shows direct benefit for DDEB caused by exon 73 mutations. Thus, the same topically applied therapeutic could be used to improve the wound healing quality in RDEB and DDEB.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/terapia , Terapia Genética/métodos , Oligonucleotídeos Antissenso/administração & dosagem , Cicatrização/genética , Animais , Biópsia , Linhagem Celular , Modelos Animais de Doenças , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Éxons/genética , Fibroblastos , Fibrose , Humanos , Queratinócitos , Camundongos , Camundongos Transgênicos , Mutação , Oligonucleotídeos Antissenso/genética , Cultura Primária de Células , Pele/efeitos dos fármacos
4.
Cell Death Dis ; 11(11): 1023, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257655

RESUMO

Chromosome 8p is frequently deleted in various cancer entities and has been shown to correlate with poor patient survival. SH2D4A is located on chromosome 8p and prevents the nuclear translocation of the pro-tumorigenic transcription factor STAT3. Here, we investigated the interaction of SH2D4A and STAT3 to shed light on the non-canonical functions of STAT3 in cooperation with the tumor suppressor SH2D4A. Using an immunoprecipitation-mass spectrometry (IP-MS) approach, we identified the mitochondrial scaffold proteins prohibitin 1 (PHB1) and prohibitin 2 (PHB2) among other proteins to potentially bind to SH2D4A. Co-immunoprecipitation and proximity ligation assays confirmed direct interactions of STAT3, PHB1, and SH2D4A in situ and in vitro. In addition, cell fractionation and immunofluorescence staining revealed co-localization of these proteins with mitochondria. These interactions were selectively interrupted by the small molecule and PHB ligand FL3. Furthermore, FL3 led to a reduction of STAT3 protein levels, STAT3 transcriptional activity, and HIF1α protein stabilization upon dimethyloxalylglycine (DMOG) treatment. Besides, mitochondrial fusion and fission markers, L-OPA1, Mfn1, and FIS1, were dysregulated upon FL3 treatment. This dysregulated morphology was accompanied by significant reduction of mitochondrial respiration, thus, FL3 significantly diminished mitochondrial respirational capacity. In contrast, SH2D4A knockout increased mitochondrial respiration, whereas FL3 reversed the effect of SH2D4A knockout. The here described results indicate that the interaction of SH2D4A and PHB1 is involved in the mitochondrial function and integrity. The demonstrated interaction with STAT3, accompanied by its reduction of transcriptional activity, further suggests that SH2D4A is linking STAT3 to its mitochondrial functions, and inhibition of PHB-interaction may have therapeutic effects in tumor cells with STAT3 activation.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Neoplasias/genética , Proteínas Repressoras/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Humanos , Proibitinas , Proteínas Repressoras/farmacologia
5.
Sci Rep ; 10(1): 7593, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371885

RESUMO

In light of the limited treatment options of diabetic polyneuropathy (DPN) available, suitable animal models are essential to investigate pathophysiological mechanisms and to identify potential therapeutic targets. In vivo evaluation with current techniques, however, often provides only restricted information about disease evolution. In the study of patients with DPN, magnetic resonance neurography (MRN) has been introduced as an innovative diagnostic tool detecting characteristic lesions within peripheral nerves. We developed a novel multicontrast ultra high field MRN strategy to examine major peripheral nerve segments in diabetic mice non-invasively. It was first validated in a cross-platform approach on human nerve tissue and then applied to the popular streptozotocin(STZ)-induced mouse model of DPN. In the absence of gross morphologic alterations, a distinct MR-signature within the sciatic nerve was observed mirroring subtle changes of the nerves' fibre composition and ultrastructure, potentially indicating early re-arrangements of DPN. Interestingly, these signal alterations differed from previously reported typical nerve lesions of patients with DPN. The capacity of our approach to non-invasively assess sciatic nerve tissue structure and function within a given mouse model provides a powerful tool for direct translational comparison to human disease hallmarks not only in diabetes but also in other peripheral neuropathic conditions.


Assuntos
Neuropatias Diabéticas/diagnóstico por imagem , Neuropatias Diabéticas/patologia , Imageamento por Ressonância Magnética , Animais , Biópsia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/complicações , Neuropatias Diabéticas/etiologia , Modelos Animais de Doenças , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Camundongos , Microscopia , Microscopia Eletrônica
6.
Int J Mol Sci ; 20(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31454892

RESUMO

Microsatellite unstable (MSI) colorectal cancers (CRCs) are characterized by mutational inactivation of Transforming Growth Factor Beta Receptor Type 2 (TGFBR2). TGFBR2-deficient CRCs present altered target gene and protein expression. Such cellular alterations modulate the content of CRC-derived extracellular vesicles (EVs). EVs function as couriers of proteins, nucleic acids, and lipids in intercellular communication. At a qualitative level, we have previously shown that TGFBR2 deficiency causes overall alterations in the EV protein content. To deepen the basic understanding of altered protein dynamics, this work aimed to determine TGFBR2-dependent EV protein signatures in a quantitative manner. Using a stable isotope labeling with amino acids in cell culture (SILAC) approach for mass spectrometry-based quantification, 48 TGFBR2-regulated proteins were identified in MSI CRC-derived EVs. Overall, TGFBR2 deficiency caused upregulation of several EV proteins related to the extracellular matrix and nucleosome as well as downregulation of proteasome-associated proteins. The present study emphasizes the general overlap of proteins between EVs and their parental CRC cells but also highlights the impact of TGFBR2 deficiency on EV protein composition. From a clinical perspective, TGFBR2-regulated quantitative differences of protein expression in EVs might nominate novel biomarkers for liquid biopsy-based MSI typing in the future.


Assuntos
Bioensaio , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Vesículas Extracelulares/metabolismo , Instabilidade de Microssatélites , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Aminoácidos/metabolismo , Bioensaio/métodos , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Vesículas Extracelulares/ultraestrutura , Regulação Neoplásica da Expressão Gênica , Humanos , Marcação por Isótopo , Biossíntese de Proteínas , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes
7.
Int J Oncol ; 55(4): 925-937, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31432155

RESUMO

In colorectal cancer (CRC) with microsatellite instability (MSI), >90% of cases are affected by inactivating frameshift mutations of transforming growth factor ß receptor type 2 (TGFBR2). TGFBR2 deficiency is considered to drive MSI tumor progression by abrogating downstream TGF­ß signaling. This pathway can alter the expression of coding and non­coding RNAs, including microRNAs (miRNAs), which are also present in extracellular vesicles (EVs) as post­transcriptional modulators of gene expression. In our previous study, it was shown that TGFBR2 deficiency alters the protein composition and function of EVs in MSI tumors. To investigate whether mutant TGFBR2 may also affect the miRNA cargo of EVs, the present study characterized miRNAs in EVs and their parental MSI tumor cells that differed only in TGFBR2 expression status. The HCT116­TGFBR2 MSI cell line model enables the doxycycline (dox)­inducible reconstituted expression of TGFBR2 in an isogenic background (­dox, TGFBR2 deficient; +dox, TGFBR2 proficient). Small RNA sequencing of cellular and EV miRNAs showed that the majority of the miRNAs (263/471; 56%) were shared between MSI tumor cells and their EVs. Exploratory data analysis revealed the TGBFR2­dependent cluster separation of miRNA profiles in EVs and MSI tumor cells. This segregation appeared to result from two subsets of miRNAs, the expression of which were regulated in a TGFBR2­dependent manner (EVs: n=10; MSI cells: n=15). In the EV subset, 7/10 miRNAs were downregulated and 3/10 were upregulated by TGFBR2 deficiency. In the cellular subset, 13/15 miRNAs were downregulated and 2/15 miRNAs were upregulated in the TGFBR2­deficient cells. The present study emphasizes the general overlap of miRNA profiles in MSI tumor cells and their EVs, but also highlights the impact of a single tumor driver mutation on the expression of individual miRNAs, as exemplified by the downregulation of miR­381­3p in TGFBR2­deficient MSI tumor cells and their secreted EVs.


Assuntos
Neoplasias Colorretais/genética , Vesículas Extracelulares/genética , MicroRNAs/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Neoplasias Colorretais/metabolismo , Doxiciclina/farmacologia , Vesículas Extracelulares/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Instabilidade de Microssatélites , Mutação , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo
8.
Hum Mutat ; 40(12): 2318-2333, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31347739

RESUMO

Autosomal recessive congenital ichthyosis (ARCI) belongs to a heterogeneous group of disorders of keratinization. To date, 10 genes have been identified to be causative for ARCI. NIPAL4 (Nipa-Like Domain-Containing 4) is the second most commonly mutated gene in ARCI. In this study, we present a large cohort of 101 families affected with ARCI carrying mutations in NIPAL4. We identified 16 novel mutations and increase the total number of pathogenic mutations in NIPAL4 to 34. Ultrastructural analysis of biopsies from six patients showed morphological abnormalities consistent with an ARCI EM type III. One patient with a homozygous splice site mutation, which leads to a loss of NIPAL4 mRNA, showed additional ultrastructural aberrations together with a more severe clinical phenotype. Our study gives insights into the frequency of mutations, a potential hot spot for mutations, and genotype-phenotype correlations.


Assuntos
Ictiose/genética , Ictiose/patologia , Mutação , Receptores de Superfície Celular/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Linhagem Celular , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Receptores de Superfície Celular/química , Análise de Sequência de DNA , Adulto Jovem
9.
Gastroenterology ; 157(5): 1352-1367.e13, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31362006

RESUMO

BACKGROUND & AIMS: Activation of TGFB (transforming growth factor ß) promotes liver fibrosis by activating hepatic stellate cells (HSCs), but the mechanisms of TGFB activation are not clear. We investigated the role of ECM1 (extracellular matrix protein 1), which interacts with extracellular and structural proteins, in TGFB activation in mouse livers. METHODS: We performed studies with C57BL/6J mice (controls), ECM1-knockout (ECM1-KO) mice, and mice with hepatocyte-specific knockout of EMC1 (ECM1Δhep). ECM1 or soluble TGFBR2 (TGFB receptor 2) were expressed in livers of mice after injection of an adeno-associated virus vector. Liver fibrosis was induced by carbon tetrachloride (CCl4) administration. Livers were collected from mice and analyzed by histology, immunohistochemistry, in situ hybridization, and immunofluorescence analyses. Hepatocytes and HSCs were isolated from livers of mice and incubated with ECM1; production of cytokines and activation of reporter genes were quantified. Liver tissues from patients with viral or alcohol-induced hepatitis (with different stages of fibrosis) and individuals with healthy livers were analyzed by immunohistochemistry and in situ hybridization. RESULTS: ECM1-KO mice spontaneously developed liver fibrosis and died by 2 months of age without significant hepatocyte damage or inflammation. In liver tissues of mice, we found that ECM1 stabilized extracellular matrix-deposited TGFB in its inactive form by interacting with αv integrins to prevent activation of HSCs. In liver tissues from patients and in mice with CCl4-induced liver fibrosis, we found an inverse correlation between level of ECM1 and severity of fibrosis. CCl4-induced liver fibrosis was accelerated in ECM1Δhep mice compared with control mice. Hepatocytes produced the highest levels of ECM1 in livers of mice. Ectopic expression of ECM1 or soluble TGFBR2 in liver prevented fibrogenesis in ECM1-KO mice and prolonged their survival. Ectopic expression of ECM1 in liver also reduced the severity of CCl4-induced fibrosis in mice. CONCLUSIONS: ECM1, produced by hepatocytes, inhibits activation of TGFB and its activation of HSCs to prevent fibrogenesis in mouse liver. Strategies to increase levels of ECM1 in liver might be developed for treatment of fibrosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Proteínas da Matriz Extracelular/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática Experimental/prevenção & controle , Fígado/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Células Estreladas do Fígado/patologia , Hepatite Alcoólica/metabolismo , Hepatite Alcoólica/patologia , Hepatite Viral Humana/metabolismo , Hepatite Viral Humana/patologia , Humanos , Fígado/patologia , Cirrose Hepática Alcoólica/metabolismo , Cirrose Hepática Alcoólica/patologia , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
10.
J Hum Genet ; 64(7): 609-616, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31015584

RESUMO

Individuals affected with autosomal recessive cutis laxa type 2B and 3 usually show translucent skin with visible veins and abnormal elastic fibers, intrauterine and/or postnatal growth restriction and a typical triangular facial gestalt. Here we describe three unrelated individuals in whom such a cutis laxa syndrome was suspected, especially after electron microscopy revealed immature and less dense dermal elastic fibers in one of them. However, one of these children also displayed optic atrophy and two hypogammaglobulinemia. All had elevated liver enzymes and acute liver failure during febrile episodes leading to early demise in two of them. The only surviving patient had been treated with immunoglobulins. Through exome sequencing we identified mutations in NBAS, coding for a protein involved in Golgi-to-ER transport. NBAS deficiency causes several rare conditions ranging from isolated recurrent acute liver failure to a multisystem disorder mainly characterized by short stature, optic nerve atrophy and Pelger-Huët anomaly (SOPH). Since we subsequently verified Pelger-Huët anomaly in two of the patients the diagnosis SOPH syndrome was unequivocally proven. Our data show that SOPH syndrome can be regarded as a differential diagnosis for the progeroid forms of cutis laxa in early infancy and that possibly treatment of the hypogammaglobulinemia can be of high relevance for the prognosis.


Assuntos
Transtornos do Crescimento/diagnóstico , Proteínas de Neoplasias/genética , Doenças do Nervo Óptico/diagnóstico , Anomalia de Pelger-Huët/diagnóstico , Agamaglobulinemia/sangue , Agamaglobulinemia/fisiopatologia , Cútis Laxa/diagnóstico , Cútis Laxa/genética , Cútis Laxa/patologia , Diagnóstico Diferencial , Tecido Elástico/ultraestrutura , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Humanos , Lactente , Fígado/enzimologia , Fígado/patologia , Masculino , Doenças do Nervo Óptico/genética , Doenças do Nervo Óptico/patologia , Anomalia de Pelger-Huët/genética , Anomalia de Pelger-Huët/patologia , Progéria/diagnóstico , Progéria/genética , Pele/patologia , Síndrome , Sequenciamento do Exoma , Adulto Jovem
12.
PLoS Genet ; 14(3): e1007242, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29561836

RESUMO

Gerodermia osteodysplastica (GO) is characterized by skin laxity and early-onset osteoporosis. GORAB, the responsible disease gene, encodes a small Golgi protein of poorly characterized function. To circumvent neonatal lethality of the GorabNull full knockout, Gorab was conditionally inactivated in mesenchymal progenitor cells (Prx1-cre), pre-osteoblasts (Runx2-cre), and late osteoblasts/osteocytes (Dmp1-cre), respectively. While in all three lines a reduction in trabecular bone density was evident, only GorabPrx1 and GorabRunx2 mutants showed dramatically thinned, porous cortical bone and spontaneous fractures. Collagen fibrils in the skin of GorabNull mutants and in bone of GorabPrx1 mutants were disorganized, which was also seen in a bone biopsy from a GO patient. Measurement of glycosaminoglycan contents revealed a reduction of dermatan sulfate levels in skin and cartilage from GorabNull mutants. In bone from GorabPrx1 mutants total glycosaminoglycan levels and the relative percentage of dermatan sulfate were both strongly diminished. Accordingly, the proteoglycans biglycan and decorin showed reduced glycanation. Also in cultured GORAB-deficient fibroblasts reduced decorin glycanation was evident. The Golgi compartment of these cells showed an accumulation of decorin, but reduced signals for dermatan sulfate. Moreover, we found elevated activation of TGF-ß in GorabPrx1 bone tissue leading to enhanced downstream signalling, which was reproduced in GORAB-deficient fibroblasts. Our data suggest that the loss of Gorab primarily perturbs pre-osteoblasts. GO may be regarded as a congenital disorder of glycosylation affecting proteoglycan synthesis due to delayed transport and impaired posttranslational modification in the Golgi compartment.


Assuntos
Doenças Ósseas/congênito , Nanismo/metabolismo , Osteoblastos/patologia , Proteoglicanas/metabolismo , Dermatopatias Genéticas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Diferenciação Celular , Decorina/metabolismo , Dermatan Sulfato/metabolismo , Modelos Animais de Doenças , Nanismo/patologia , Feminino , Fraturas Ósseas/genética , Glicosilação , Proteínas da Matriz do Complexo de Golgi , Células-Tronco Mesenquimais/patologia , Células-Tronco Mesenquimais/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoblastos/metabolismo , Transdução de Sinais , Dermatopatias Genéticas/patologia , Proteínas de Transporte Vesicular/genética
14.
Cell Commun Signal ; 15(1): 14, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376875

RESUMO

BACKGROUND: Colorectal cancers (CRCs) that lack DNA mismatch repair function exhibit the microsatellite unstable (MSI) phenotype and are characterized by the accumulation of frameshift mutations at short repetitive DNA sequences (microsatellites). These tumors recurrently show inactivating frameshift mutations in the tumor suppressor Transforming Growth Factor Beta Receptor Type 2 (TGFBR2) thereby abrogating downstream signaling. How altered TGFBR2 signaling affects exosome-mediated communication between MSI tumor cells and their environment has not been resolved. Here, we report on molecular alterations of exosomes shed by MSI cells and the biological response evoked in recipient cells. METHODS: Exosomes were isolated and characterized by electron microscopy, nanoparticle tracking, and western blot analysis. TGFBR2-dependent effects on the cargo and functions of exosomes were studied in a MSI CRC model cell line enabling reconstituted and inducible TGFBR2 expression and signaling. Microsatellite frameshift mutations in exosomal and cellular DNA were examined by PCR-based DNA fragment analysis and exosomal protein profiles were identified by mass spectrometry. Uptake of fluorescent-labeled exosomes by hepatoma recipient cells was monitored by confocal microscopy. TGFBR2-dependent exosomal effects on secreted cytokine levels of recipient cells were analyzed by Luminex technology and ELISA. RESULTS: Frameshift mutation patterns in microsatellite stretches of TGFBR2 and other MSI target genes were found to be reflected in the cargo of MSI CRC-derived exosomes. At the proteome level, reconstituted TGFBR2 expression and signaling uncovered two protein subsets exclusively occurring in exosomes derived from TGFBR2-deficient (14 proteins) or TGFBR2-proficient (five proteins) MSI donor cells. Uptake of these exosomes by recipient cells caused increased secretion (2-6 fold) of specific cytokines (Interleukin-4, Stem Cell Factor, Platelet-derived Growth Factor-B), depending on the TGFBR2 expression status of the tumor cell. CONCLUSION: Our results indicate that the coding MSI phenotype of DNA mismatch repair-deficient CRC cells is maintained in their exosomal DNA. Moreover, we uncovered that a recurrent MSI tumor driver mutation like TGFBR2 can reprogram the protein content of MSI cell-derived exosomes and in turn modulate the cytokine secretion profile of recipient cells. Apart from its diagnostic potential, these TGFBR2-dependent exosomal molecular and proteomic signatures might help to understand the signaling routes used by MSI tumors. Fricke et al. uncovered coding microsatellite instability-associated mutations of colorectal tumor driver genes like TGFBR2 in MSI tumor cellderived exosomes. Depending on the TGFBR2 expression status of their donor cells, shed exosomes show distinct proteomic signatures and promote altered cytokine secretion profiles in recipient cells.


Assuntos
Neoplasias Colorretais/metabolismo , Reparo de Erro de Pareamento de DNA , Exossomos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Quimiocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Exossomos/ultraestrutura , Mutação da Fase de Leitura/genética , Células HCT116 , Células Hep G2 , Humanos , Instabilidade de Microssatélites , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteoma/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Reprodutibilidade dos Testes
15.
Mol Cell Proteomics ; 16(6): 998-1008, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28396511

RESUMO

In prostate cancer and other malignancies sensitive and robust biomarkers are lacking or have relevant limitations. Prostate specific antigen (PSA), the only biomarker widely used in prostate cancer, is suffering from low specificity. Exosomes offer new perspectives in the discovery of blood-based biomarkers. Here we present a proof-of principle study for a proteomics-based identification pipeline, implementing existing data sources, to exemplarily identify exosome-based biomarker candidates in prostate cancer.Exosomes from malignant PC3 and benign PNT1A cells and from FBS-containing medium were isolated using sequential ultracentrifugation. Exosome and control samples were analyzed on an LTQ-Orbitrap XL mass spectrometer. Proteomic data is available via ProteomeXchange with identifier PXD003651. We developed a scoring scheme to rank 64 proteins exclusively found in PC3 exosomes, integrating data from four public databases and published mass spectrometry data sets. Among the top candidates, we focused on the tight junction protein claudin 3. Retests under serum-free conditions using immunoblotting and immunogold labeling confirmed the presence of claudin 3 on PC3 exosomes. Claudin 3 levels were determined in the blood plasma of patients with localized (n = 58; 42 with Gleason score 6-7, 16 with Gleason score ≥8) and metastatic prostate cancer (n = 11) compared with patients with benign prostatic hyperplasia (n = 15) and healthy individuals (n = 15) using ELISA, without prior laborious exosome isolation. ANOVA showed different CLDN3 plasma levels in these groups (p = 0.004). CLDN3 levels were higher in patients with Gleason ≥8 tumors compared with patients with benign prostatic hyperplasia (p = 0.012) and Gleason 6-7 tumors (p = 0.029). In patients with localized tumors CLDN3 levels predicted a Gleason score ≥ 8 (AUC = 0.705; p = 0.016) and did not correlate with serum PSA.By using the described workflow claudin 3 was identified and validated as a potential blood-based biomarker in prostate cancer. Furthermore this workflow could serve as a template to be used in other cancer entities.


Assuntos
Biomarcadores Tumorais/metabolismo , Claudina-3/metabolismo , Exossomos/metabolismo , Neoplasias da Próstata/metabolismo , Idoso , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral , Claudina-3/sangue , Bases de Dados Factuais , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Gradação de Tumores , Hiperplasia Prostática/sangue , Hiperplasia Prostática/metabolismo , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia
16.
Am J Hum Genet ; 99(6): 1395-1404, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889062

RESUMO

The genetic basis of epidermolysis bullosa, a group of genetic disorders characterized by the mechanically induced formation of skin blisters, is largely known, but a number of cases still remain genetically unsolved. Here, we used whole-exome and targeted sequencing to identify monoallelic mutations, c.1A>G and c.2T>C, in the translation initiation codon of the gene encoding kelch-like protein 24 (KLHL24) in 14 individuals with a distinct skin-fragility phenotype and skin cleavage within basal keratinocytes. Remarkably, mutation c.1A>G occurred de novo and was recurrent in families originating from different countries. The striking similarities of the clinical features of the affected individuals point to a unique and very specific pathomechanism. We showed that mutations in the translation initiation codon of KLHL24 lead to the usage of a downstream translation initiation site with the same reading frame and formation of a truncated polypeptide. The pathobiology was examined in keratinocytes and fibroblasts of the affected individuals and via expression of mutant KLHL24, and we found mutant KLHL24 to be associated with abnormalities of intermediate filaments in keratinocytes and fibroblasts. In particular, KLHL24 mutations were associated with irregular and fragmented keratin 14. Recombinant overexpression of normal KLHL24 promoted keratin 14 degradation, whereas mutant KLHL24 showed less activity than the normal molecule. These findings identify KLHL24 mutations as a cause of skin fragility and identify a role for KLHL24 in maintaining the balance between intermediate filament stability and degradation required for skin integrity.


Assuntos
Alelos , Códon de Iniciação/genética , Mutação , Proteínas Repressoras/genética , Anormalidades da Pele/genética , Pele/patologia , Adulto , Criança , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Pele/metabolismo
17.
Mol Ther Nucleic Acids ; 5: e307, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27045209

RESUMO

Clonal gene therapy protocols based on the precise manipulation of epidermal stem cells require highly efficient gene-editing molecular tools. We have combined adeno-associated virus (AAV)-mediated delivery of donor template DNA with transcription activator-like nucleases (TALE) expressed by adenoviral vectors to address the correction of the c.6527insC mutation in the COL7A1 gene, causing recessive dystrophic epidermolysis bullosa in a high percentage of Spanish patients. After transduction with these viral vectors, high frequencies of homology-directed repair were found in clones of keratinocytes derived from a recessive dystrophic epidermolysis bullosa (RDEB) patient homozygous for the c.6527insC mutation. Gene-edited clones recovered the expression of the COL7A1 transcript and collagen VII protein at physiological levels. In addition, treatment of patient keratinocytes with TALE nucleases in the absence of a donor template DNA resulted in nonhomologous end joining (NHEJ)-mediated indel generation in the vicinity of the c.6527insC mutation site in a large proportion of keratinocyte clones. A subset of these indels restored the reading frame of COL7A1 and resulted in abundant, supraphysiological expression levels of mutant or truncated collagen VII protein. Keratinocyte clones corrected both by homology-directed repair (HDR) or NHEJ were used to regenerate skin displaying collagen VII in the dermo-epidermal junction.

18.
J Invest Dermatol ; 136(6): 1116-1123, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26899947

RESUMO

The tissue half-life of proteins largely determines treatment frequency of non-gene-editing-based therapies targeting the cause of genodermatoses. Surprisingly, such knowledge is missing for a vast number of proteins involved in pathologies. The dermal-epidermal junction zone is believed to be a rather static structure, but to our knowledge no detailed analysis of the stability of proteins within this zone has been performed. Here, we addressed the in vivo half-life of collagen type VII using genetic ablation of its expression and therapeutic introduction of exogenous collagen VII in a preclinical model. A similar in vivo stability of collagen VII was observed in the skin, tongue, and esophagus, with a half-life of about 1 month. Collagen VII expressed by intradermally injected mesenchymal stromal cells also exhibited a similar half-life. Our study provides key information needed for the development of protein replacement or cell-based therapies for dystrophic epidermolysis bullosa caused by genetic deficiency of collagen VII. Moreover, by showing what we define as an intermediate half-life of collagen VII, our study challenges the view of the dermal-epidermal junction zone as a static structure with very slow turnover.


Assuntos
Colágeno Tipo VII/uso terapêutico , Epidermólise Bolhosa Distrófica/terapia , Terapia Genética/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Western Blotting , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Derme/metabolismo , Modelos Animais de Doenças , Epiderme/metabolismo , Epidermólise Bolhosa Distrófica/genética , Fibroblastos/citologia , Meia-Vida , Humanos , Masculino , Camundongos , Camundongos Knockout , Distribuição Aleatória , Dermatopatias Genéticas/genética , Dermatopatias Genéticas/terapia
19.
Mol Ther ; 23(8): 1368-1379, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25858020

RESUMO

Dystrophic epidermolysis bullosa (DEB) is an incurable skin fragility disorder caused by mutations in the COL7A1 gene, coding for the anchoring fibril protein collagen VII (C7). Life-long mechanosensitivity of skin and mucosal surfaces is associated with large body surface erosions, chronic wounds, and secondary fibrosis that severely impede functionality. Here, we present the first systematic long-term evaluation of the therapeutic potential of a mesenchymal stromal cell (MSC)-based therapy for DEB. Intradermal administration of MSCs in a DEB mouse model resulted in production and deposition of C7 at the dermal-epidermal junction, the physiological site of function. The effect was dose-dependent with MSCs being up to 10-fold more potent than dermal fibroblasts. MSCs promoted regeneration of DEB wounds via normalization of dermal and epidermal healing and improved skin integrity through de novo formation of functional immature anchoring fibrils. Additional benefits were gained by MSCs' anti-inflammatory effects, which led to decreased immune cell infiltration into injured DEB skin. In our setting, the clinical benefit of MSC injections lasted for more than 3 months. We conclude that MSCs are viable options for localized DEB therapy. Importantly, however, the cell number needed to achieve therapeutic efficacy excludes the use of systemic administration.


Assuntos
Epidermólise Bolhosa Distrófica/terapia , Células-Tronco Mesenquimais/citologia , Pele/patologia , Cicatrização , Animais , Anti-Inflamatórios/química , Colágeno Tipo VII/metabolismo , Modelos Animais de Doenças , Epiderme/metabolismo , Epidermólise Bolhosa Distrófica/imunologia , Fibroblastos/metabolismo , Humanos , Inflamação , Injeções Intradérmicas , Camundongos , Regeneração , Pele/metabolismo
20.
Hum Mutat ; 36(5): 535-47, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25703627

RESUMO

Bi-allelic variants in CHST14, encoding dermatan 4-O-sulfotransferase-1 (D4ST1), cause musculocontractural Ehlers-Danlos syndrome (MC-EDS), a recessive disorder characterized by connective tissue fragility, craniofacial abnormalities, congenital contractures, and developmental anomalies. Recently, the identification of bi-allelic variants in DSE, encoding dermatan sulfate epimerase-1 (DS-epi1), in a child with MC-EDS features, suggested locus heterogeneity for this condition. DS-epi1 and D4ST1 are crucial for biosynthesis of dermatan sulfate (DS) moieties in the hybrid chondroitin sulfate (CS)/DS glycosaminoglycans (GAGs). Here, we report four novel families with severe MC-EDS caused by unique homozygous CHST14 variants and the second family with a homozygous DSE missense variant, presenting a somewhat milder MC-EDS phenotype. The glycanation of the dermal DS proteoglycan decorin is impaired in fibroblasts from D4ST1- as well as DS-epi1-deficient patients. However, in D4ST1-deficiency, the decorin GAG is completely replaced by CS, whereas in DS-epi1-deficiency, still some DS moieties are present. The multisystemic abnormalities observed in our patients support a tight spatiotemporal control of the balance between CS and DS, which is crucial for multiple processes including cell differentiation, organ development, cell migration, coagulation, and connective tissue integrity.


Assuntos
Dermatan Sulfato/biossíntese , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/metabolismo , Heterogeneidade Genética , Fenótipo , Adolescente , Adulto , Sequência de Aminoácidos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Biópsia , Criança , Colágeno/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Síndrome de Ehlers-Danlos/diagnóstico , Éxons , Matriz Extracelular/metabolismo , Fácies , Feminino , Fibronectinas/metabolismo , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Linhagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Pele/patologia , Pele/ultraestrutura , Sulfotransferases/química , Sulfotransferases/genética , Sulfotransferases/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA