Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
JCO Precis Oncol ; 7: e2200695, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535880

RESUMO

PURPOSE: Among cancer predisposition genes, most direct-to-consumer (DTC) genetic tests evaluate three Ashkenazi Jewish (AJ) founder mutations in BRCA1/2, which represent a small proportion of pathogenic or likely pathogenic variants (PLPV) in cancer predisposing genes. In this study, we investigate PLPV in BRCA1/2 and other cancer predisposition genes that are missed by testing only AJ founder BRCA1/2 mutations. METHODS: Individuals were referred to genetic testing for personal diagnoses of breast and/or ovarian cancer (clinical cohort) or were self-referred (nonindication-based cohort). There were 348,692 participants in the clinical cohort and 7,636 participants in the nonindication-based cohort. Both cohorts were analyzed for BRCA1/2 AJ founder mutations. Full sequence analysis was done for PLPV in BRCA1/2, CDH1, PALB2, PTEN, STK11, TP53, ATM, BARD1, BRIP1, CHEK2 (truncating variants), EPCAM, MLH1, MSH2/6, NF1, PMS2, RAD51C/D, and 22 other genes. RESULTS: BRCA1/2 AJ founder mutations accounted for 10.8% and 29.7% of BRCA1/2 PLPV in the clinical and nonindication-based cohorts, respectively. AJ founder mutations accounted for 89.9% of BRCA1/2 PLPV in those of full AJ descent, but only 69.6% of those of partial AJ descent. In total, 0.5% of all individuals had a BRCA1/2 AJ founder variant, while 7.7% had PLPV in a high-risk breast/ovarian cancer gene. For non-AJ individuals, limiting evaluation to the AJ founder BRCA1/2 mutations missed >90% of mutations in actionable cancer risk genes. Secondary analysis revealed a false-positive rate of 69% for PLPV outside of non-AJ BRCA 1/2 founder mutations. CONCLUSION: DTC genetic testing misses >90% of BRCA1/2 PLPV in individuals of non-AJ ancestry and about 10% of BRCA1/2 PLPV among AJ individuals. There is a high false-positivity rate for non-AJ BRCA 1/2 PLPV with DTC genetic testing.


Assuntos
Proteína BRCA1 , Neoplasias Ovarianas , Humanos , Feminino , Proteína BRCA1/genética , Proteína BRCA2/genética , Estudos Retrospectivos , Predisposição Genética para Doença/genética , Detecção Precoce de Câncer , Testes Genéticos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética
3.
Front Genet ; 13: 867226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783293

RESUMO

Although multiple factors can influence the uptake of cascade genetic testing, the impact of proband indication has not been studied. We performed a retrospective, cross-sectional study comparing cascade genetic testing rates among relatives of probands who received either diagnostic germline testing or non-indication-based proactive screening via next-generation sequencing (NGS)-based multigene panels for hereditary cancer syndromes (HCS) and/or familial hypercholesterolemia (FH). The proportion of probands with a medically actionable (positive) finding were calculated based on genes associated with Centers for Disease Control and Prevention (CDC) Tier 1 conditions, HCS genes, and FH genes. Among probands with a positive finding, cascade testing rates and influencing factors were assessed. A total of 270,715 probands were eligible for inclusion in the study (diagnostic n = 254,281,93.9%; proactive n = 16,434, 6.1%). A positive result in a gene associated with a CDC Tier 1 condition was identified in 10,520 diagnostic probands (4.1%) and 337 proactive probands (2.1%), leading to cascade testing among families of 3,305 diagnostic probands (31.4%) and 36 proactive probands (10.7%) (p < 0.0001). A positive result in an HCS gene was returned to 23,272 diagnostic probands (9.4%) and 970 proactive probands (6.1%), leading to cascade testing among families of 6,611 diagnostic probands (28.4%) and 89 proactive probands (9.2%) (p < 0.0001). Cascade testing due to a positive result in an HCS gene was more commonly pursued when the diagnostic proband was White, had a finding in a gene associated with a CDC Tier 1 condition, or had a personal history of cancer, or when the proactive proband was female. A positive result in an FH gene was returned to 1,647 diagnostic probands (25.3%) and 67 proactive probands (0.62%), leading to cascade testing among families of 360 diagnostic probands (21.9%) and 4 proactive probands (6.0%) (p < 0.01). Consistently higher rates of cascade testing among families of diagnostic probands may be due to a perceived urgency because of personal or family history of disease. Due to the proven clinical benefit of cascade testing, further research on obstacles to systematic implementation and uptake of testing for relatives of any proband with a medically actionable variant is warranted.

4.
BMC Med ; 19(1): 199, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34404389

RESUMO

BACKGROUND: The use of proactive genetic screening for disease prevention and early detection is not yet widespread. Professional practice guidelines from the American College of Medical Genetics and Genomics (ACMG) have encouraged reporting pathogenic variants that confer personal risk for actionable monogenic hereditary disorders, but only as secondary findings from exome or genome sequencing. The Centers for Disease Control and Prevention (CDC) recognizes the potential public health impact of three Tier 1 actionable disorders. Here, we report results of a large multi-center cohort study to determine the yield and potential value of screening healthy individuals for variants associated with a broad range of actionable monogenic disorders, outside the context of secondary findings. METHODS: Eligible adults were offered a proactive genetic screening test by health care providers in a variety of clinical settings. The screening panel based on next-generation sequencing contained up to 147 genes associated with monogenic disorders within cancer, cardiovascular, and other important clinical areas. Sequence and intragenic copy number variants classified as pathogenic, likely pathogenic, pathogenic (low penetrance), or increased risk allele were considered clinically significant and reported. Results were analyzed by clinical area and severity/burden of disease using chi-square tests without Yates' correction. RESULTS: Among 10,478 unrelated adults screened, 1619 (15.5%) had results indicating personal risk for an actionable monogenic disorder. In contrast, only 3.1 to 5.2% had clinically reportable variants in genes suggested by the ACMG version 2 secondary findings list to be examined during exome or genome sequencing, and 2% had reportable variants related to CDC Tier 1 conditions. Among patients, 649 (6.2%) were positive for a genotype associated with a disease of high severity/burden, including hereditary cancer syndromes, cardiovascular disorders, or malignant hyperthermia susceptibility. CONCLUSIONS: This is one of the first real-world examples of specialists and primary care providers using genetic screening with a multi-gene panel to identify health risks in their patients. Nearly one in six individuals screened for variants associated with actionable monogenic disorders had clinically significant results. These findings provide a foundation for further studies to assess the role of genetic screening as part of regular medical care.


Assuntos
Testes Genéticos , Médicos , Adulto , Estudos de Coortes , Exoma , Predisposição Genética para Doença , Genômica , Humanos
5.
JAMA Cardiol ; 6(8): 902-909, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34037665

RESUMO

Importance: Familial hypercholesterolemia (FH) is the most common inherited cardiovascular disease and carries significant morbidity and mortality risks. Genetic testing can identify affected individuals, but some array-based assays screen only a small subset of known pathogenic variants. Objective: To identify the number of clinically significant variants associated with FH that would be missed by an array-based, limited-variant screen when compared with next-generation sequencing (NGS)-based comprehensive testing. Design, Setting, and Participants: This cross-sectional study compared comprehensive genetic test results for clinically significant variants associated with FH with results for a subset of 24 variants screened by a limited-variant array. Data were deidentified next-generation sequencing results from indication-based or proactive gene panels. Individuals receiving next-generation sequencing-based genetic testing, either for an FH indication between November 2015 and June 2020 or as proactive health screening between February 2016 and June 2020 were included. Ancestry was reported by clinicians who could select from preset options or enter free text on the test requisition form. Main Outcomes and Measures: Number of pathogenic or likely pathogenic (P/LP) variants identified. Results: This study included 4563 individuals who were referred for FH diagnostic testing and 6482 individuals who received next-generation sequencing of FH-associated genes as part of a proactive genetic test. Among individuals in the indication cohort, the median (interquartile range) age at testing was 49 (32-61) years, 55.4% (2528 of 4563) were female, and 63.6% (2902 of 4563) were self-reported White/Caucasian. In the indication cohort, the positive detection rate would have been 8.4% (382 of 4563) for a limited-variant screen compared with the 27.0% (1230 of 4563) observed with the next-generation sequencing-based comprehensive test. As a result, 68.9% (848 of 1230) of individuals with a P/LP finding in an FH-associated gene would have been missed by the limited screen. The potential for missed findings in the indication cohort varied by ancestry; among individuals with a P/LP finding, 93.7% (59 of 63) of self-reported Black/African American individuals and 84.7% (122 of 144) of Hispanic individuals would have been missed by the limited-variant screen, compared with 33.3% (4 of 12) of Ashkenazi Jewish individuals. In the proactive cohort, the prevalence of clinically significant FH variants was approximately 1:191 per the comprehensive test, and 61.8% (21 of 34) of individuals with an FH-associated P/LP finding would have been missed by a limited-variant screen. Conclusions and Relevance: Limited-variant screens may falsely reassure the majority of individuals at risk for FH that they do not carry a disease-causing variant, especially individuals of self-reported Black/African American and Hispanic ancestry.


Assuntos
Testes Genéticos/métodos , Hiperlipoproteinemia Tipo II/diagnóstico , Diagnóstico Ausente/estatística & dados numéricos , Adolescente , Adulto , Negro ou Afro-Americano/genética , Triagem e Testes Direto ao Consumidor/métodos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hispânico ou Latino/genética , Humanos , Hiperlipoproteinemia Tipo II/genética , Judeus/genética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sensibilidade e Especificidade , População Branca/genética , Adulto Jovem
7.
Am J Med Genet A ; 176(9): 2024-2027, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30240112

RESUMO

Noonan syndrome (NS), the most common of the RASopathies, is a developmental disorder caused by heterozygous germline mutations in genes encoding proteins in the RAS-MAPK signaling pathway. Noonan-like syndrome with loose anagen hair (NSLH, including NSLH1, OMIM #607721 and NSLH2, OMIM #617506) is characterized by typical features of NS with additional findings of macrocephaly, loose anagen hair, growth hormone deficiency in some, and a higher incidence of intellectual disability. All NSLH1 reported cases to date have had an SHOC2 c.4A>G, p.Ser2Gly mutation; NSLH2 cases have been reported with a PPP1CB c.146G>C, p.Pro49Arg mutation, or c.166G>C, p.Ala56Pro mutation. True cleft palate does not appear to have been previously reported in individuals with NS or with NSLH. While some patients with NS have had growth hormone deficiency (GHD), other endocrine abnormalities are only rarely documented. We present a female patient with NSLH1 who was born with a posterior cleft palate, micrognathia, and mild hypotonia. Other findings in her childhood and young adulthood years include hearing loss, strabismus, and hypopituitarism with growth hormone, thyroid stimulating hormone (TSH), and gonadotropin deficiencies. The SHOC2 mutation may be responsible for this patient's additional features of cleft palate and hypopituitarism.


Assuntos
Fissura Palatina/diagnóstico , Fissura Palatina/genética , Estudos de Associação Genética , Hipopituitarismo/diagnóstico , Hipopituitarismo/genética , Síndrome dos Cabelos Anágenos Frouxos/diagnóstico , Síndrome dos Cabelos Anágenos Frouxos/genética , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Adulto , Fácies , Feminino , Estudos de Associação Genética/métodos , Marcadores Genéticos , Humanos , Cariótipo , Fenótipo , Adulto Jovem
8.
Front Cardiovasc Med ; 3: 20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446933

RESUMO

Advances in DNA sequencing have made large, diagnostic gene panels affordable and efficient. Broad adoption of such panels has begun to deliver on the promises of personalized medicine, but has also brought new challenges such as the presence of unexpected results, or results of uncertain clinical significance. Genetic analysis of inherited cardiac conditions is particularly challenging due to the extensive genetic heterogeneity underlying cardiac phenotypes, and the overlapping, variable, and incompletely penetrant nature of their clinical presentations. The design of effective diagnostic tests and the effective use of the results depend on a clear understanding of the relationship between each gene and each considered condition. To address these issues, we developed simple, systematic approaches to three fundamental challenges: (1) evaluating the strength of the evidence suggesting that a particular condition is caused by pathogenic variants in a particular gene, (2) evaluating whether unusual genotype/phenotype observations represent a plausible expansion of clinical phenotype associated with a gene, and (3) establishing a molecular diagnostic strategy to capture overlapping clinical presentations. These approaches focus on the systematic evaluation of the pathogenicity of variants identified in clinically affected individuals, and the natural history of disease in those individuals. Here, we applied these approaches to the evaluation of more than 100 genes reported to be associated with inherited cardiomyopathies and arrhythmias including hypertrophic cardiomyopathy, dilated cardiomyopathy, arrhythmogenic right ventricular dysplasia or cardiomyopathy, long QT syndrome, short QT syndrome, Brugada, and catecholaminergic polymorphic ventricular tachycardia, and to a set of related syndromes such as Noonan Syndrome and Fabry disease. These approaches provide a framework for delivering meaningful and accurate genetic test results to individuals with hereditary cardiac conditions.

9.
Am J Med Genet A ; 170(7): 1791-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27133397

RESUMO

Neurodevelopmental disorders (NDD) are common, with 1-3% of general population being affected, but the etiology is unknown in most individuals. Clinical whole-exome sequencing (WES) has proven to be a powerful tool for the identification of pathogenic variants leading to Mendelian disorders, among which NDD represent a significant percentage. Performing WES with a trio-approach has proven to be extremely effective in identifying de novo pathogenic variants as a common cause of NDD. Here we report six unrelated individuals with a common phenotype consisting of NDD with severe speech delay, hypotonia, and facial dysmorphism. These patients underwent WES with a trio approach and de novo heterozygous predicted pathogenic novel variants in the KAT6A gene were identified. The KAT6A gene encodes a histone acetyltransfrease protein and it has long been known for its structural involvement in acute myeloid leukemia; however, it has not previously been associated with any congenital disorder. In animal models the KAT6A ortholog is involved in transcriptional regulation during development. Given the similar findings in animal models and our patient's phenotypes, we hypothesize that KAT6A could play a role in development of the brain, face, and heart in humans. © 2016 Wiley Periodicals, Inc.


Assuntos
Exoma/genética , Histona Acetiltransferases/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Adulto , Criança , Pré-Escolar , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Mutação , Transtornos do Neurodesenvolvimento/fisiopatologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA