Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1170012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063871

RESUMO

Clinical outcomes from infection with SARS-CoV-2, the cause of the COVID-19 pandemic, are remarkably variable ranging from asymptomatic infection to severe pneumonia and death. One of the key drivers of this variability is differing trajectories in the immune response to SARS-CoV-2 infection. Many studies have noted markedly elevated cytokine levels in severe COVID-19, although results vary by cohort, cytokine studied and sensitivity of assay used. We assessed the immune response in acute COVID-19 by measuring 20 inflammatory markers in 118 unvaccinated patients with acute COVID-19 (median age: 70, IQR: 58-79 years; 48.3% female) recruited during the first year of the pandemic and 44 SARS-CoV-2 naïve healthy controls. Acute COVID-19 was associated with marked elevations in nearly all pro-inflammatory markers, whilst eleven markers (namely IL-1ß, IL-2, IL-6, IL-10, IL-18, IL-23, IL-33, TNF-α, IP-10, G-CSF and YKL-40) were associated with disease severity. We observed significant correlations between nearly all markers elevated in those infected with SARS-CoV-2 consistent with widespread immune dysregulation. Principal component analysis highlighted a pro-inflammatory cytokine signature (with strongest contributions from IL-1ß, IL-2, IL-6, IL-10, IL-33, G-CSF, TNF-α and IP-10) which was independently associated with severe COVID-19 (aOR: 1.40, 1.11-1.76, p=0.005), invasive mechanical ventilation (aOR: 1.61, 1.19-2.20, p=0.001) and mortality (aOR 1.57, 1.06-2.32, p = 0.02). Our findings demonstrate elevated cytokines and widespread immune dysregulation in severe COVID-19, adding further evidence for the role of a pro-inflammatory cytokine signature in severe and critical COVID-19.


Assuntos
COVID-19 , Humanos , Feminino , Idoso , Masculino , Citocinas , Interleucina-10 , Interleucina-33 , SARS-CoV-2 , Interleucina-6 , Fator de Necrose Tumoral alfa , Pandemias , Quimiocina CXCL10 , Interleucina-2 , Fator Estimulador de Colônias de Granulócitos
2.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36633910

RESUMO

Rosacea is a common chronic inflammatory skin disease with a fluctuating course of excessive inflammation and apparent neovascularization. Microbial dysbiosis with a high density of Bacillus oleronius and increased activity of kallikrein 5, which cleaves cathelicidin antimicrobial peptide, are key pathogenic triggers in rosacea. However, how these events are linked to the disease remains unknown. Here, we show that type I IFNs produced by plasmacytoid DCs represent the pivotal link between dysbiosis, the aberrant immune response, and neovascularization. Compared with other commensal bacteria, B. oleronius is highly susceptible and preferentially killed by cathelicidin antimicrobial peptides, leading to enhanced generation of complexes with bacterial DNA. These bacterial DNA complexes but not DNA complexes derived from host cells are required for cathelicidin-induced activation of plasmacytoid DCs and type I IFN production. Moreover, kallikrein 5 cleaves cathelicidin into peptides with heightened DNA binding and type I IFN-inducing capacities. In turn, excessive type I IFN expression drives neoangiogenesis via IL-22 induction and upregulation of the IL-22 receptor on endothelial cells. These findings unravel a potentially novel pathomechanism that directly links hallmarks of rosacea to the killing of dysbiotic commensal bacteria with induction of a pathogenic type I IFN-driven and IL-22-mediated angiogenesis.


Assuntos
Catelicidinas , Disbiose , Interferon Tipo I , Microbiota , Rosácea , Pele , Humanos , Bactérias , DNA Bacteriano , Disbiose/microbiologia , Células Endoteliais/metabolismo , Inflamação/metabolismo , Inflamação/microbiologia , Calicreínas , Rosácea/metabolismo , Rosácea/microbiologia , Rosácea/patologia , Interferon Tipo I/metabolismo , Microbiota/fisiologia , Bacillus/metabolismo , Pele/metabolismo , Pele/microbiologia , Pele/patologia , Neovascularização Patológica/microbiologia
3.
Nat Commun ; 13(1): 6320, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329021

RESUMO

The plasma multimeric glycoprotein von Willebrand factor (VWF) plays a critical role in primary hemostasis by tethering platelets to exposed collagen at sites of vascular injury. Recent studies have identified additional biological roles for VWF, and in particular suggest that VWF may play an important role in regulating inflammatory responses. However, the molecular mechanisms through which VWF exerts its immuno-modulatory effects remain poorly understood. In this study, we report that VWF binding to macrophages triggers downstream MAP kinase signaling, NF-κB activation and production of pro-inflammatory cytokines and chemokines. In addition, VWF binding also drives macrophage M1 polarization and shifts macrophage metabolism towards glycolysis in a p38-dependent manner. Cumulatively, our findings define an important biological role for VWF in modulating macrophage function, and thereby establish a novel link between primary hemostasis and innate immunity.


Assuntos
Hemostasia , Fator de von Willebrand , Fator de von Willebrand/metabolismo , Hemostasia/fisiologia , Plaquetas/metabolismo , Imunidade Inata , Macrófagos/metabolismo
4.
Immunity ; 55(4): 575-577, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417668

RESUMO

Epithelial cells (tuft and goblet cells) interact with immune cells on the "inside" while secreting effector molecules into the topological "outside." In this issue of Immunity, Zhao et al. investigate an interleukin-33 (IL-33) secretion mechanism in goblet cells dependent on O-GlcNAcylation and gasdermin pores facilitating worm expulsion.


Assuntos
Alarminas , Nippostrongylus , Animais , Células Epiteliais , Células Caliciformes , Interleucina-13
5.
Sci Rep ; 10(1): 17178, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057074

RESUMO

Tuberculosis-causing Mycobacterium tuberculosis (Mtb) is transmitted via airborne droplets followed by a primary infection of macrophages and dendritic cells. During the activation of host defence mechanisms also neutrophils and T helper 1 (TH1) and TH17 cells are recruited to the site of infection. The TH17 cell-derived interleukin (IL)-17 in turn induces the cathelicidin LL37 which shows direct antimycobacterial effects. Here, we investigated the role of IL-26, a TH1- and TH17-associated cytokine that exhibits antimicrobial activity. We found that both IL-26 mRNA and protein are strongly increased in tuberculous lymph nodes. Furthermore, IL-26 is able to directly kill Mtb and decrease the infection rate in macrophages. Binding of IL-26 to lipoarabinomannan might be one important mechanism in extracellular killing of Mtb. Macrophages and dendritic cells respond to IL-26 with secretion of tumor necrosis factor (TNF)-α and chemokines such as CCL20, CXCL2 and CXCL8. In dendritic cells but not in macrophages cytokine induction by IL-26 is partly mediated via Toll like receptor (TLR) 2. Taken together, IL-26 strengthens the defense against Mtb in two ways: firstly, directly due to its antimycobacterial properties and secondly indirectly by activating innate immune mechanisms.


Assuntos
Interleucinas/imunologia , Interleucinas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/metabolismo , Adulto , Idoso , Linhagem Celular , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Células HEK293 , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , Células THP-1/imunologia , Células THP-1/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
6.
Allergy ; 74(12): 2437-2448, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31269229

RESUMO

BACKGROUND: In recent years, the BRAF inhibitor vemurafenib has been successfully established in the therapy of advanced melanoma. Despite its superior efficacy, the use of vemurafenib is limited by frequent inflammatory cutaneous adverse events that affect patients' quality of life and may lead to dose reduction or even cessation of anti-tumor therapy. To date, the molecular and cellular mechanisms of vemurafenib-induced rashes have remained largely elusive. METHODS: In this study, we deployed immunohistochemistry, RT-qPCR, flow cytometry, lymphocyte activation tests, and different cell-free protein-interaction assays. RESULTS: We here demonstrate that vemurafenib inhibits the downstream signaling of the canonical pathway of aryl hydrocarbon receptor (AhR) in vitro, thereby inducing the expression of proinflammatory cytokines (eg, TNF) and chemokines (eg, CCL5). In line with these results, we observed an impaired expression of AhR-regulated genes (eg, CYP1A1) and an upregulation of the corresponding proinflammatory genes in vivo. Moreover, results of lymphocyte activation tests showed the absence of drug-specific T cells in respective patients. CONCLUSION: Taken together, we obtained no hint of an underlying sensitization against vemurafenib but found evidence suggesting that vemurafenib enhances proinflammatory responses by inhibition of canonical AhR signaling. Our findings contribute to our understanding of the central role of the AhR in skin inflammation and may point toward a potential role for topical AhR agonists in supportive cancer care.


Assuntos
Antineoplásicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Inibidores de Proteínas Quinases/farmacologia , Receptores de Hidrocarboneto Arílico/agonistas , Vemurafenib/farmacologia , Idoso , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Biomarcadores , Biópsia , Estudos de Casos e Controles , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Dermatite/diagnóstico , Dermatite/etiologia , Modelos Animais de Doenças , Cobaias , Humanos , Modelos Moleculares , Conformação Proteica , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Hidrocarboneto Arílico/química , Relação Estrutura-Atividade , Subpopulações de Linfócitos T , Células Th1/imunologia , Células Th1/metabolismo , Vemurafenib/efeitos adversos , Vemurafenib/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA