Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell Death Differ ; 29(12): 2519-2530, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35831623

RESUMO

High-throughput methodologies are the cornerstone of screening approaches to identify novel compounds that regulate immune cell function. To identify novel targeted therapeutics to treat immune disorders and haematological malignancies, there is a need to integrate functional cellular information with the molecular mechanisms that regulate changes in immune cell phenotype. We facilitate this goal by combining quantitative methods for dissecting complex simultaneous cell phenotypic effects with genomic analysis. This combination strategy we term Multiplexed Analysis of Cells sequencing (MAC-seq), a modified version of Digital RNA with perturbation of Genes (DRUGseq). We applied MAC-seq to screen compounds that target the epigenetic machinery of B cells and assess altered humoral immunity by measuring changes in proliferation, survival, differentiation and transcription. This approach revealed that polycomb repressive complex 2 (PRC2) inhibitors promote antibody secreting cell (ASC) differentiation in both murine and human B cells in vitro. This is further validated using T cell-dependent immunization in mice. Functional dissection of downstream effectors of PRC2 using arrayed CRISPR screening uncovered novel regulators of B cell differentiation, including Mybl1, Myof, Gas7 and Atoh8. Together, our findings demonstrate that integrated phenotype-transcriptome analyses can be effectively combined with drug screening approaches to uncover the molecular circuitry that drives lymphocyte fate decisions.


Assuntos
Linfócitos B , Epigênese Genética , Animais , Humanos , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Fenótipo , Complexo Repressor Polycomb 2/metabolismo
2.
Immunity ; 55(3): 423-441.e9, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139355

RESUMO

Cell death plays an important role during pathogen infections. Here, we report that interferon-γ (IFNγ) sensitizes macrophages to Toll-like receptor (TLR)-induced death that requires macrophage-intrinsic death ligands and caspase-8 enzymatic activity, which trigger the mitochondrial apoptotic effectors, BAX and BAK. The pro-apoptotic caspase-8 substrate BID was dispensable for BAX and BAK activation. Instead, caspase-8 reduced pro-survival BCL-2 transcription and increased inducible nitric oxide synthase (iNOS), thus facilitating BAX and BAK signaling. IFNγ-primed, TLR-induced macrophage killing required iNOS, which licensed apoptotic caspase-8 activity and reduced the BAX and BAK inhibitors, A1 and MCL-1. The deletion of iNOS or caspase-8 limited SARS-CoV-2-induced disease in mice, while caspase-8 caused lethality independent of iNOS in a model of hemophagocytic lymphohistiocytosis. These findings reveal that iNOS selectively licenses programmed cell death, which may explain how nitric oxide impacts disease severity in SARS-CoV-2 infection and other iNOS-associated inflammatory conditions.


Assuntos
COVID-19/imunologia , Caspase 8/metabolismo , Interferon gama/metabolismo , Linfo-Histiocitose Hemofagocítica/imunologia , Macrófagos/imunologia , Mitocôndrias/metabolismo , SARS-CoV-2/fisiologia , Animais , Caspase 8/genética , Células Cultivadas , Citotoxicidade Imunológica , Humanos , Interferon gama/genética , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Transdução de Sinais , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
3.
Nat Commun ; 12(1): 6920, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836954

RESUMO

Bone marrow is a preferred metastatic site for multiple solid tumours and is associated with poor prognosis and significant morbidity. Accumulating evidence indicates that cancer cells colonise specialised niches within the bone marrow to support their long-term propagation, but the precise location and mechanisms that mediate niche interactions are unknown. Using breast cancer as a model of solid tumour metastasis to the bone marrow, we applied large-scale quantitative three-dimensional imaging to characterise temporal changes in the bone marrow microenvironment during disease progression. We show that mouse mammary tumour cells preferentially home to a pre-existing metaphyseal domain enriched for type H vessels. Metastatic lesion outgrowth rapidly remodelled the local vasculature through extensive sprouting to establish a tumour-supportive microenvironment. The evolution of this tumour microenvironment reflects direct remodelling of the vascular endothelium through tumour-derived granulocyte-colony stimulating factor (G-CSF) in a hematopoietic cell-independent manner. Therapeutic targeting of the metastatic niche by blocking G-CSF receptor inhibited pathological blood vessel remodelling and reduced bone metastasis burden. These findings elucidate a mechanism of 'host' microenvironment hijacking by mammary tumour cells to subvert the local microvasculature to form a specialised, pro-tumorigenic niche.


Assuntos
Medula Óssea , Neoplasias Ósseas , Neoplasias da Mama , Neoplasias Mamárias Animais , Metástase Neoplásica , Microambiente Tumoral , Animais , Medula Óssea/diagnóstico por imagem , Medula Óssea/cirurgia , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/cirurgia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/cirurgia , Neoplasias da Mama/cirurgia , Progressão da Doença , Fator Estimulador de Colônias de Granulócitos , Humanos , Imageamento Tridimensional , Camundongos , Metástase Neoplásica/diagnóstico por imagem , Metástase Neoplásica/terapia , Segunda Neoplasia Primária , Receptores de Fator Estimulador de Colônias
4.
Blood Adv ; 5(16): 3102-3112, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34402883

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous disease with poor prognosis and limited treatment strategies. Determining the role of cell-extrinsic regulators of leukemic cells is vital to gain clinical insights into the biology of AML. Iron is a key extrinsic regulator of cancer, but its systemic regulation remains poorly explored in AML. To address this question, we studied iron metabolism in patients with AML at diagnosis and explored the mechanisms involved using the syngeneic MLL-AF9-induced AML mouse model. We found that AML is a disorder with a unique iron profile, not associated with inflammation or transfusion, characterized by high ferritin, low transferrin, high transferrin saturation (TSAT), and high hepcidin. The increased TSAT in particular, contrasts with observations in other cancer types and in anemia of inflammation. Using the MLL-AF9 mouse model of AML, we demonstrated that the AML-induced loss of erythroblasts is responsible for iron redistribution and increased TSAT. We also show that AML progression is delayed in mouse models of systemic iron overload and that elevated TSAT at diagnosis is independently associated with increased overall survival in AML. We suggest that TSAT may be a relevant prognostic marker in AML.


Assuntos
Anemia , Leucemia Mieloide Aguda , Animais , Eritroblastos , Humanos , Ferro , Camundongos , Transferrina
5.
Cell ; 184(12): 3143-3162.e32, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004147

RESUMO

Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína Fosfatase 2/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos NOD , Fosforilação , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Especificidade por Substrato
6.
Cancer Discov ; 11(10): 2582-2601, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33990344

RESUMO

Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) are an approved treatment for hormone receptor-positive breast cancer and are currently under evaluation across hundreds of clinical trials for other cancer types. The clinical success of these inhibitors is largely attributed to well-defined tumor-intrinsic cytostatic mechanisms, whereas their emerging role as immunomodulatory agents is less understood. Using integrated epigenomic, transcriptomic, and proteomic analyses, we demonstrated a novel action of CDK4/6 inhibitors in promoting the phenotypic and functional acquisition of immunologic T-cell memory. Short-term priming with a CDK4/6 inhibitor promoted long-term endogenous antitumor T-cell immunity in mice, enhanced the persistence and therapeutic efficacy of chimeric antigen receptor T cells, and induced a retinoblastoma-dependent T-cell phenotype supportive of favorable responses to immune checkpoint blockade in patients with melanoma. Together, these mechanistic insights significantly broaden the prospective utility of CDK4/6 inhibitors as clinical tools to boost antitumor T-cell immunity. SIGNIFICANCE: Immunologic memory is critical for sustained antitumor immunity. Our discovery that CDK4/6 inhibitors drive T-cell memory fate commitment sheds new light on their clinical activity, which is essential for the design of clinical trial protocols incorporating these agents, particularly in combination with immunotherapy, for the treatment of cancer.This article is highlighted in the In This Issue feature, p. 2355.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Feminino , Humanos , Células T de Memória/efeitos dos fármacos , Camundongos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cell Rep ; 33(3): 108290, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33086063

RESUMO

JQ1 is a BET-bromodomain inhibitor that has immunomodulatory effects. However, the precise molecular mechanism that JQ1 targets to elicit changes in antibody production is not understood. Our results show that JQ1 induces apoptosis, reduces cell proliferation, and as a consequence, inhibits antibody-secreting cell differentiation. ChIP-sequencing reveals a selective displacement of Brd4 in response to acute JQ1 treatment (<2 h), resulting in specific transcriptional repression. After 8 h, subsequent alterations in gene expression arise as a result of the global loss of Brd4 occupancy. We demonstrate that apoptosis induced by JQ1 is solely attributed to the pro-apoptotic protein Bim (Bcl2l11). Conversely, cell-cycle regulation by JQ1 is associated with multiple Myc-associated gene targets. Our results demonstrate that JQ1 drives temporal changes in Brd4 displacement that results in a specific transcriptional profile that directly affects B cell survival and proliferation to modulate the humoral immune response.


Assuntos
Proteína 11 Semelhante a Bcl-2/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Azepinas/farmacologia , Linfócitos B/metabolismo , Proteína 11 Semelhante a Bcl-2/fisiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Exp Med ; 217(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32706855

RESUMO

How platelets are produced by megakaryocytes in vivo remains controversial despite more than a century of investigation. Megakaryocytes readily produce proplatelet structures in vitro; however, visualization of platelet release from proplatelets in vivo has remained elusive. We show that within the native prenatal and adult environments, the frequency and rate of proplatelet formation is incompatible with the physiological demands of platelet replacement. We resolve this inconsistency by performing in-depth analysis of plasma membrane budding, a cellular process that has previously been dismissed as a source of platelet production. Our studies demonstrate that membrane budding results in the sustained release of platelets directly into the peripheral circulation during both fetal and adult life without induction of cell death or proplatelet formation. In support of this model, we demonstrate that in mice deficient for NF-E2 (the thrombopoietic master regulator), the absence of membrane budding correlates with failure of in vivo platelet production. Accordingly, we propose that membrane budding, rather than proplatelet formation, supplies the majority of the platelet biomass.


Assuntos
Plaquetas/citologia , Membrana Celular/metabolismo , Animais , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Células da Medula Óssea/citologia , Linhagem da Célula , Membrana Celular/ultraestrutura , Bases de Dados como Assunto , Embrião de Mamíferos/citologia , Feto/citologia , Regulação da Expressão Gênica , Imageamento Tridimensional , Integrases/metabolismo , Fígado/embriologia , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos Endogâmicos C57BL , Ploidias , Reprodutibilidade dos Testes , Crânio/citologia
9.
Blood ; 135(13): 1019-1031, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31978211

RESUMO

Deregulated overexpression of MYC is implicated in the development and malignant progression of most (∼70%) human tumors. MYC drives cell growth and proliferation, but also, at high levels, promotes apoptosis. Here, we report that the proliferative capacity of MYC-driven normal and neoplastic B lymphoid cells depends on MNT, a MYC-related transcriptional repressor. Our genetic data establish that MNT synergizes with MYC by suppressing MYC-driven apoptosis, and that it does so primarily by reducing the level of pro-apoptotic BIM. In Eµ-Myc mice, which model the MYC/IGH chromosome translocation in Burkitt's lymphoma, homozygous Mnt deletion greatly reduced lymphoma incidence by enhancing apoptosis and markedly decreasing premalignant B lymphoid cell populations. Strikingly, by inducing Mnt deletion within transplanted fully malignant Eµ-Myc lymphoma cells, we significantly extended transplant recipient survival. The dependency of lymphomas on MNT for survival suggests that drugs inhibiting MNT could significantly boost therapy of MYC-driven tumors by enhancing intrinsic MYC-driven apoptosis.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Transformação Celular Neoplásica/genética , Linfoma/genética , Linfoma/mortalidade , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Antineoplásicos/uso terapêutico , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Medula Óssea/metabolismo , Medula Óssea/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Linfoma/tratamento farmacológico , Linfoma/patologia , Linfoma de Células B/genética , Camundongos , Camundongos Transgênicos , Proteínas Repressoras/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cells ; 9(1)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947615

RESUMO

One of the hallmarks of cancer cells is their ability to evade cell death via apoptosis. The inhibitor of apoptosis proteins (IAPs) are a family of proteins that act to promote cell survival. For this reason, upregulation of IAPs is associated with a number of cancer types as a mechanism of resistance to cell death and chemotherapy. As such, IAPs are considered a promising therapeutic target for cancer treatment, based on the role of IAPs in resistance to apoptosis, tumour progression and poor patient prognosis. The mitochondrial protein smac (second mitochondrial activator of caspases), is an endogenous inhibitor of IAPs, and several small molecule mimetics of smac (smac-mimetics) have been developed in order to antagonise IAPs in cancer cells and restore sensitivity to apoptotic stimuli. However, recent studies have revealed that smac-mimetics have broader effects than was first attributed. It is now understood that they are key regulators of innate immune signalling and have wide reaching immuno-modulatory properties. As such, they are ideal candidates for immunotherapy combinations. Pre-clinically, successful combination therapies incorporating smac-mimetics and oncolytic viruses, as with chimeric antigen receptor (CAR) T cell therapy, have been reported, and clinical trials incorporating smac-mimetics and immune checkpoint blockade are ongoing. Here, the potential of IAP antagonism to enhance immunotherapy strategies for the treatment of cancer will be discussed.


Assuntos
Fatores Imunológicos/farmacologia , Imunoterapia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Neoplasias/terapia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Humanos , Fatores Imunológicos/imunologia , Proteínas Inibidoras de Apoptose/imunologia , Neoplasias/imunologia , Neoplasias/patologia
11.
Blood ; 133(16): 1729-1741, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30755422

RESUMO

Somatically acquired mutations in PHF6 (plant homeodomain finger 6) frequently occur in hematopoietic malignancies and often coincide with ectopic expression of TLX3. However, there is no functional evidence to demonstrate whether these mutations contribute to tumorigenesis. Similarly, the role of PHF6 in hematopoiesis is unknown. We report here that Phf6 deletion in mice resulted in a reduced number of hematopoietic stem cells (HSCs), an increased number of hematopoietic progenitor cells, and an increased proportion of cycling stem and progenitor cells. Loss of PHF6 caused increased and sustained hematopoietic reconstitution in serial transplantation experiments. Interferon-stimulated gene expression was upregulated in the absence of PHF6 in hematopoietic stem and progenitor cells. The numbers of hematopoietic progenitor cells and cycling hematopoietic stem and progenitor cells were restored to normal by combined loss of PHF6 and the interferon α and ß receptor subunit 1. Ectopic expression of TLX3 alone caused partially penetrant leukemia. TLX3 expression and loss of PHF6 combined caused fully penetrant early-onset leukemia. Our data suggest that PHF6 is a hematopoietic tumor suppressor and is important for fine-tuning hematopoietic stem and progenitor cell homeostasis.


Assuntos
Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/metabolismo , Leucemia/etiologia , Proteínas Repressoras/fisiologia , Animais , Carcinogênese , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Receptores de Interferon , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor
12.
Immunol Cell Biol ; 97(1): 29-38, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107066

RESUMO

BPSM1 (Bone phenotype spontaneous mutant 1) mice develop severe polyarthritis and heart valve disease as a result of a spontaneous mutation in the Tnf gene. In these mice, the insertion of a retrotransposon in the 3' untranslated region of Tnf causes a large increase in the expression of the cytokine. We have found that these mice also develop inducible bronchus-associated lymphoid tissue (iBALT), as well as nodular lymphoid hyperplasia (NLH) in the bone marrow. Loss of TNFR1 prevents the development of both types of follicles, but deficiency of TNFR1 in the hematopoietic compartment only prevents the iBALT and not the NLH phenotype. We show that the development of arthritis and heart valve disease does not depend on the presence of the tertiary lymphoid tissues. Interestingly, while loss of IL-17 or IL-23 limits iBALT and NLH development to some extent, it has no effect on polyarthritis or heart valve disease in BPSM1 mice.


Assuntos
Tecido Linfoide/patologia , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Medula Óssea/patologia , Hiperplasia , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-23/genética , Interleucina-23/metabolismo , Tecido Linfoide/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/genética
13.
Immunol Cell Biol ; 97(2): 229-235, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30422351

RESUMO

The majority of acute myeloid leukemia (AML) patients have a poor response to conventional chemotherapy. The survival of chemoresistant cells is thought to depend on leukemia-bone marrow (BM) microenvironment interactions, which are not well understood. The CXCL12/CXCR4 axis has been proposed to support AML growth but was not studied at the single AML cell level. We recently showed that T-cell acute lymphoblastic leukemia (T-ALL) cells are highly motile in the BM; however, the characteristics of AML cell migration within the BM remain undefined. Here, we characterize the in vivo migratory behavior of AML cells and their response to chemotherapy and CXCR4 antagonism, using high-resolution 2-photon and confocal intravital microscopy of mouse calvarium BM and the well-established MLL-AF9-driven AML mouse model. We used the Notch1-driven T-ALL model as a benchmark comparison and AMD3100 for CXCR4 antagonism experiments. We show that AML cells are migratory, and in contrast with T-ALL, chemoresistant AML cells become less motile. Moreover, and in contrast with T-ALL, the in vivo exploratory behavior of expanding and chemoresistant AML cells is unaffected by AMD3100. These results expand our understanding of AML cells-BM microenvironment interactions, highlighting unique traits of leukemia of different lineages.


Assuntos
Movimento Celular , Quimiocina CXCL12/metabolismo , Compostos Heterocíclicos/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Receptores CXCR4/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzilaminas , Medula Óssea/metabolismo , Medula Óssea/patologia , Linhagem Celular Tumoral , Ciclamos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Heterocíclicos/metabolismo , Microscopia Intravital , Leucemia Mieloide Aguda/metabolismo , Camundongos , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Microambiente Tumoral
14.
Cardiovasc Res ; 115(2): 277-291, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590405

RESUMO

Haematopoiesis, the process of blood production, can be altered during the initiation or progression of many diseases. Cardiovascular disease (CVD) has been shown to be heavily influenced by changes to the haematopoietic system, including the types and abundance of immune cells produced. It is now well established that innate immune cells are increased in people with CVD, and the mechanisms contributing to this can be vastly different depending on the risk factors or comorbidities present. Many of these changes begin at the level of the haematopoietic stem and progenitor cells (HSPCs) that reside in the bone marrow (BM). In general, the HSPCs and downstream myeloid progenitors are expanded via increased proliferation in the setting of atherosclerotic CVD. However, HSPCs can also be encouraged to leave the BM and colonise extramedullary sites (i.e. the spleen). Within the BM, HSPCs reside in specialized microenvironments, often referred to as a niche. To date in depth studies assessing the damage or dysregulation that occurs in the BM niche in varying CVDs are scarce. In this review, we provide a general overview of the complex components and interactions within the BM niche and how they influence the function of HSPCs. Additionally, we discuss the main findings regarding changes in the HSPC niche that influence the progression of CVD. We hypothesize that understanding the influence of the BM niche in CVD will aid in delineating new pathways for therapeutic interventions.


Assuntos
Aterosclerose/metabolismo , Sistema Cardiovascular/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Nicho de Células-Tronco , Animais , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Sistema Cardiovascular/patologia , Sistema Cardiovascular/fisiopatologia , Progressão da Doença , Células-Tronco Hematopoéticas/patologia , Humanos , Fenótipo , Placa Aterosclerótica , Transdução de Sinais
15.
Nature ; 560(7717): 253-257, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069049

RESUMO

Acetylation of histones by lysine acetyltransferases (KATs) is essential for chromatin organization and function1. Among the genes coding for the MYST family of KATs (KAT5-KAT8) are the oncogenes KAT6A (also known as MOZ) and KAT6B (also known as MORF and QKF)2,3. KAT6A has essential roles in normal haematopoietic stem cells4-6 and is the target of recurrent chromosomal translocations, causing acute myeloid leukaemia7,8. Similarly, chromosomal translocations in KAT6B have been identified in diverse cancers8. KAT6A suppresses cellular senescence through the regulation of suppressors of the CDKN2A locus9,10, a function that requires its KAT activity10. Loss of one allele of KAT6A extends the median survival of mice with MYC-induced lymphoma from 105 to 413 days11. These findings suggest that inhibition of KAT6A and KAT6B may provide a therapeutic benefit in cancer. Here we present highly potent, selective inhibitors of KAT6A and KAT6B, denoted WM-8014 and WM-1119. Biochemical and structural studies demonstrate that these compounds are reversible competitors of acetyl coenzyme A and inhibit MYST-catalysed histone acetylation. WM-8014 and WM-1119 induce cell cycle exit and cellular senescence without causing DNA damage. Senescence is INK4A/ARF-dependent and is accompanied by changes in gene expression that are typical of loss of KAT6A function. WM-8014 potentiates oncogene-induced senescence in vitro and in a zebrafish model of hepatocellular carcinoma. WM-1119, which has increased bioavailability, arrests the progression of lymphoma in mice. We anticipate that this class of inhibitors will help to accelerate the development of therapeutics that target gene transcription regulated by histone acetylation.


Assuntos
Benzenossulfonatos/farmacologia , Senescência Celular/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Hidrazinas/farmacologia , Linfoma/tratamento farmacológico , Linfoma/patologia , Sulfonamidas/farmacologia , Acetilação/efeitos dos fármacos , Animais , Benzenossulfonatos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Desenvolvimento de Medicamentos , Fibroblastos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Histonas/química , Histonas/metabolismo , Hidrazinas/uso terapêutico , Linfoma/enzimologia , Linfoma/genética , Lisina/química , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Sulfonamidas/uso terapêutico
16.
Blood ; 131(14): 1507-1511, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29487069

RESUMO

The interplay of cancer cells and surrounding stroma is critical in disease progression. This is particularly evident in hematological malignancies that infiltrate the bone marrow and peripheral lymphoid organs. Despite clear evidence for the existence of these interactions, the precise repercussions on the growth of leukemic cells are poorly understood. Recent development of novel imaging technology and preclinical disease models has advanced our comprehension of leukemia-microenvironment crosstalk and has potential implications for development of novel treatment options.


Assuntos
Medula Óssea/metabolismo , Neoplasias Hematológicas/metabolismo , Leucemia/metabolismo , Neoplasias Experimentais/metabolismo , Microambiente Tumoral , Animais , Medula Óssea/patologia , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/terapia , Humanos , Leucemia/patologia , Leucemia/terapia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia
17.
Cell Stem Cell ; 22(1): 64-77.e6, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29276143

RESUMO

Bone marrow vascular niches sustain hematopoietic stem cells (HSCs) and are drastically remodeled in leukemia to support pathological functions. Acute myeloid leukemia (AML) cells produce angiogenic factors, which likely contribute to this remodeling, but anti-angiogenic therapies do not improve AML patient outcomes. Using intravital microscopy, we found that AML progression leads to differential remodeling of vasculature in central and endosteal bone marrow regions. Endosteal AML cells produce pro-inflammatory and anti-angiogenic cytokines and gradually degrade endosteal endothelium, stromal cells, and osteoblastic cells, whereas central marrow remains vascularized and splenic vascular niches expand. Remodeled endosteal regions have reduced capacity to support non-leukemic HSCs, correlating with loss of normal hematopoiesis. Preserving endosteal endothelium with the small molecule deferoxamine or a genetic approach rescues HSCs loss, promotes chemotherapeutic efficacy, and enhances survival. These findings suggest that preventing degradation of the endosteal vasculature may improve current paradigms for treating AML.


Assuntos
Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/patologia , Nicho de Células-Tronco , Animais , Medula Óssea/irrigação sanguínea , Medula Óssea/patologia , Contagem de Células , Hematopoese , Humanos , Microscopia Intravital , Camundongos Endogâmicos C57BL , Baço/patologia , Células Estromais/patologia , Fatores de Tempo , Microambiente Tumoral
18.
PLoS One ; 12(8): e0183222, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28827843

RESUMO

The lymphatic system has a major significance in the metastatic pathways in women's cancers. Lymphatic pumping depends on both extrinsic and intrinsic mechanisms, and the mechanical behavior of lymphatic vessels regulates the function of the system. However, data on the mechanical properties and function of human lymphatics are lacking. Our aim is to characterize, for the first time, the passive biomechanical behavior of human collecting lymphatic vessels removed at pelvic lymph node dissection during primary debulking surgeries for epithelial ovarian cancer. Isolated vessels were cannulated and then pressurized at varying levels of applied axial stretch in a calcium-free Krebs buffer. Pressurized vessels were then imaged using multi-photon microscopy for collagen-elastin structural composition and fiber orientation. Both pressure-diameter and force-elongation responses were highly nonlinear, and axial stretching of the vessel served to decrease diameter at constant pressure. Pressure-diameter behavior for the human vessels is very similar to data from rat mesenteric vessels, though the human vessels were approximately 10× larger than those from rats. Multiphoton microscopy revealed the vessels to be composed of an inner layer of elastin with an outer layer of aligned collagen fibers. This is the first study that successfully described the passive biomechanical response and composition of human lymphatic vessels in patients with ovarian cancer. Future work should expand on this knowledge base with investigations of vessels from other anatomical locations, contractile behavior, and the implications on metastatic cell transport.


Assuntos
Fenômenos Biomecânicos , Vasos Linfáticos/fisiologia , Pelve , Adulto , Idoso , Animais , Humanos , Pessoa de Meia-Idade , Modelos Teóricos , Ratos , Ratos Sprague-Dawley , Adulto Jovem
19.
Science ; 356(6345): 1397-1401, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28619718

RESUMO

The success of new therapies hinges on our ability to understand their molecular and cellular mechanisms of action. We modified BET bromodomain inhibitors, an epigenetic-based therapy, to create functionally conserved compounds that are amenable to click chemistry and can be used as molecular probes in vitro and in vivo. We used click proteomics and click sequencing to explore the gene regulatory function of BRD4 (bromodomain containing protein 4) and the transcriptional changes induced by BET inhibitors. In our studies of mouse models of acute leukemia, we used high-resolution microscopy and flow cytometry to highlight the heterogeneity of drug activity within tumor cells located in different tissue compartments. We also demonstrate the differential distribution and effects of BET inhibitors in normal and malignant cells in vivo. This study provides a potential framework for the preclinical assessment of a wide range of drugs.


Assuntos
Benzodiazepinas/uso terapêutico , Química Click , Sistemas de Liberação de Medicamentos , Epigenômica , Leucemia/tratamento farmacológico , Animais , Benzodiazepinas/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Leucemia/patologia , Camundongos , Medicina de Precisão , Distribuição Tecidual , Fatores de Transcrição/antagonistas & inibidores
20.
Nat Commun ; 8: 14581, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262675

RESUMO

The Eµ-Myc mouse is an extensively used model of MYC driven malignancy; however to date there has only been partial characterization of MYC co-operative mutations leading to spontaneous lymphomagenesis. Here we sequence spontaneously arising Eµ-Myc lymphomas to define transgene architecture, somatic mutations, and structural alterations. We identify frequent disruptive mutations in the PRC1-like component and BCL6-corepressor gene Bcor. Moreover, we find unexpected concomitant multigenic lesions involving Cdkn2a loss and other cancer genes including Nras, Kras and Bcor. These findings challenge the assumed two-hit model of Eµ-Myc lymphoma and demonstrate a functional in vivo role for Bcor in suppressing tumorigenesis.


Assuntos
Linfócitos B/metabolismo , Regulação Neoplásica da Expressão Gênica , Linfoma de Células B/genética , Mutação , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Repressoras/genética , Alelos , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Sistemas CRISPR-Cas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/imunologia , Modelos Animais de Doenças , Edição de Genes , Frequência do Gene , Janus Quinase 2/genética , Janus Quinase 2/imunologia , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-myc/imunologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Proteínas Repressoras/imunologia , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/imunologia , Transcriptoma , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/imunologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA