Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Lancet Neurol ; 23(3): 243-255, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280392

RESUMO

BACKGROUND: Laquinimod modulates CNS inflammatory pathways thought to be involved in the pathology of Huntington's disease. Studies with laquinimod in transgenic rodent models of Huntington's disease suggested improvements in motor function, reduction of brain volume loss, and prolonged survival. We aimed to evaluate the safety and efficacy of laquinimod in improving motor function and reducing caudate volume loss in patients with Huntington's disease. METHODS: LEGATO-HD was a multicentre, double-blind, placebo-controlled, phase 2 study done at 48 sites across ten countries (Canada, Czech Republic, Germany, Italy, Netherlands, Portugal, Russia, Spain, UK, and USA). Patients aged 21-55 years with a cytosine-adenosine-guanine (CAG) repeat length of between 36 and 49 who had symptomatic Huntington's disease with a Unified Huntington's Disease Rating Scale-Total Motor Score (UHDRS-TMS) of higher than 5 and a Total Functional Capacity score of 8 or higher were randomly assigned (1:1:1:1) by centralised interactive response technology to laquinimod 0·5 mg, 1·0 mg, or 1·5 mg, or to matching placebo, administered orally once daily over 52 weeks; people involved in the randomisation had no other role in the study. Participants, investigators, and study personnel were masked to treatment assignment. The 1·5 mg group was discontinued before recruitment was finished because of cardiovascular safety concerns in multiple sclerosis studies. The primary endpoint was change from baseline in the UHDRS-TMS and the secondary endpoint was percent change in caudate volume, both comparing the 1·0 mg group with the placebo group at week 52. Primary and secondary endpoints were assessed in the full analysis set (ie, all randomised patients who received at least one dose of study drug and had at least one post-baseline UHDRS-TMS assessment). Safety measures included adverse event frequency and severity, and clinical and laboratory examinations, and were assessed in the safety analysis set (ie, all randomised patients who received at least one dose of study drug). This trial is registered with ClinicalTrials.gov, NCT02215616, and EudraCT, 2014-000418-75, and is now complete. FINDINGS: Between Oct 28, 2014, and June 19, 2018, 352 adults with Huntington's disease (179 [51%] men and 173 [49%] women; mean age 43·9 [SD 7·6] years and 340 [97%] White) were randomly assigned: 107 to laquinimod 0·5 mg, 107 to laquinimod 1·0 mg, 30 to laquinimod 1·5 mg, and 108 to matching placebo. Least squares mean change from baseline in UHDRS-TMS at week 52 was 1·98 (SE 0·83) in the laquinimod 1·0 mg group and 1·2 (0·82) in the placebo group (least squares mean difference 0·78 [95% CI -1·42 to 2·98], p=0·4853). Least squares mean change in caudate volume was 3·10% (SE 0·38) in the 1·0 mg group and 4·86% (0·38) in the placebo group (least squares mean difference -1·76% [95% CI -2·67 to -0·85]; p=0·0002). Laquinimod was well tolerated and there were no new safety findings. Serious adverse events were reported by eight (7%) patients on placebo, seven (7%) on laquinimod 0·5 mg, five (5%) on laquinimod 1·0 mg, and one (3%) on laquinimod 1·5 mg. There was one death, which occurred in the placebo group and was unrelated to treatment. The most frequent adverse events in all laquinimod dosed groups (0·5 mg, 1·0 mg, and 1·5 mg) were headache (38 [16%]), diarrhoea (24 [10%]), fall (18 [7%]), nasopharyngitis (20 [8%]), influenza (15 [6%]), vomiting (13 [5%]), arthralgia (11 [5%]), irritability (ten [4%]), fatigue (eight [3%]), and insomnia (eight [3%]). INTERPRETATION: Laquinimod did not show a significant effect on motor symptoms assessed by the UHDRS-TMS, but significantly reduced caudate volume loss compared with placebo at week 52. Huntington's disease has a chronic and slowly progressive course, and this study does not address whether a longer duration of laquinimod treatment could have produced detectable and meaningful changes in the clinical assessments. FUNDING: Teva Pharmaceutical Industries.


Assuntos
Doença de Huntington , Quinolonas , Adulto , Masculino , Humanos , Feminino , Doença de Huntington/tratamento farmacológico , Resultado do Tratamento , Quinolonas/uso terapêutico , Alemanha , Método Duplo-Cego
2.
Hum Gene Ther ; 34(17-18): 927-946, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37597209

RESUMO

Lipoprotein lipase deficiency (LPLD) results from mutations within the lipoprotein lipase (LPL) gene that lead to a complete lack of catalytically active LPL protein. Glybera was one of the first adeno-associated virus (AAV) gene replacement therapy to receive European Medicines Agency regulatory approval for the treatment of LPLD. However, Glybera is no longer marketed potentially due to a combination of economical, manufacturing, and vector-related issues. The aim of this study was to develop a more efficacious AAV gene therapy vector for LPLD. Following preclinical biodistribution, efficacy and non-Good Laboratory Practice toxicity studies with novel AAV1 and AAV8-based vectors in mice, we identified AAV8 pVR59. AAV8 pVR59 delivered a codon-optimized, human gain-of-function hLPLS447X transgene driven by a CAG promoter in an AAV8 capsid. AAV8 pVR59 was significantly more efficacious, at 10- to 100-fold lower doses, compared with an AAV1 vector based on Glybera, when delivered intramuscularly or intravenously, respectively, in mice with LPLD. Efficient gene transfer was observed within the injected skeletal muscle and liver following delivery of AAV8 pVR59, with long-term correction of LPLD phenotypes, including normalization of plasma triglycerides and lipid tolerance, for up to 6 months post-treatment. While intramuscular delivery of AAV8 pVR59 was well tolerated, intravenous administration augmented liver pathology. These results highlight the feasibility of developing a superior AAV vector for the treatment of LPLD and provide critical insight for initiating studies in larger animal models. The identification of an AAV gene therapy vector that is more efficacious at lower doses, when paired with recent advances in production and manufacturing technologies, will ultimately translate to increased safety and accessibility for patients.


Assuntos
Hiperlipoproteinemia Tipo I , Humanos , Animais , Camundongos , Hiperlipoproteinemia Tipo I/genética , Hiperlipoproteinemia Tipo I/terapia , Distribuição Tecidual , Transgenes , Administração Intravenosa
3.
J Pharmacol Exp Ther ; 386(1): 4-14, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36958846

RESUMO

Divalent metal transporter 1 (DMT1) cotransports ferrous iron and protons and is the primary mechanism for uptake of nonheme iron by enterocytes. Inhibitors are potentially useful as therapeutic agents to treat iron overload disorders such as hereditary hemochromatosis or ß-thalassemia intermedia, provided that inhibition can be restricted to the duodenum. We used a calcein quench assay to identify human DMT1 inhibitors. Dimeric compounds were made to generate more potent compounds with low systemic exposure. Direct block of DMT1 was confirmed by voltage clamp measurements. The lead compound, XEN602, strongly inhibits dietary nonheme iron uptake in both rats and pigs yet has negligible systemic exposure. Efficacy is maintained for >2 weeks in a rat subchronic dosing assay. Doses that lowered iron content in the spleen and liver by >50% had no effect on the tissue content of other divalent cations except for cobalt. XEN602 represents a powerful pharmacological tool for understanding the physiologic function of DMT1 in the gut. SIGNIFICANCE STATEMENT: This report introduces methodology to develop potent, gut-restricted inhibitors of divalent metal transporter 1 (DMT1) and identifies XEN602 as a suitable compound for in vivo studies. We also report novel animal models to quantify the inhibition of dietary uptake of iron in both rodents and pigs. This research shows that inhibition of DMT1 is a promising means to treat iron overload disorders.


Assuntos
Sobrecarga de Ferro , Humanos , Ratos , Animais , Suínos , Sobrecarga de Ferro/tratamento farmacológico , Ferro/metabolismo , Transporte Biológico , Proteínas de Ligação ao Ferro/metabolismo , Modelos Animais
4.
Front Physiol ; 14: 1086112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36711022

RESUMO

Introduction: Huntington disease is an autosomal dominant neurodegenerative disorder which is caused by a CAG repeat expansion in the HTT gene that codes for an elongated polyglutamine tract in the huntingtin (HTT) protein. Huntingtin is subjected to multiple post-translational modifications which regulate its cellular functions and degradation. We have previously identified a palmitoylation site at cysteine 214 (C214), catalyzed by the enzymes ZDHHC17 and ZDHHC13. Reduced palmitoylation level of mutant huntingtin is linked to toxicity and loss of function. Moreover, we have described N-terminal myristoylation by the N-myristoyltransferases of a short fragment of huntingtin (HTT553-586) at glycine 553 (G553) following proteolysis at aspartate 552 (D552). Results: Here, we show that huntingtin is palmitoylated at numerous cysteines: C105, C433, C3134 and C3144. In addition, we confirm that full-length huntingtin is cleaved at D552 and post-translationally myristoylated at G553. Importantly, blocking caspase cleavage at the critical and pathogenic aspartate 586 (D586) significantly increases posttranslational myristoylation of huntingtin. In turn, myristoylation of huntingtin promotes the co-interaction between C-terminal and N-terminal huntingtin fragments, which is also protective. Discussion: This suggests that the protective effect of inhibiting caspase-cleavage at D586 may be mediated through post-translational myristoylation of huntingtin at G553.

5.
J Huntingtons Dis ; 11(4): 383-389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36442204

RESUMO

A reduced incidence of various forms of cancer has been reported in Huntington's disease patients and may be due to pro-apoptotic effects of mutant huntingtin. We tested this hypothesis by assessing the effects of huntingtin protein overexpression on survival in two murine cancer models. We generated YAC HD mice containing human huntingtin transgenes with various CAG tract lengths (YAC18, YAC72, YAC128) on either an Msh2 or p53 null background which have increased cancer incidence. In both mouse models of cancer, the overexpression of either mutant or wild-type huntingtin had no significant effect on overall survival. These results do not support the hypothesis that mutant huntingtin expression is protective against cancer.


Assuntos
Doença de Huntington , Neoplasias , Camundongos , Animais , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares , Modelos Animais de Doenças , Neoplasias/genética
6.
Redox Biol ; 56: 102424, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988447

RESUMO

Deficits in mitochondrial function and redox deregulation have been attributed to Huntington's disease (HD), a genetic neurodegenerative disorder largely affecting the striatum. However, whether these changes occur in early stages of the disease and can be detected in vivo is still unclear. In the present study, we analysed changes in mitochondrial function and production of reactive oxygen species (ROS) at early stages and with disease progression. Studies were performed in vivo in human brain by PET using [64Cu]-ATSM and ex vivo in human skin fibroblasts of premanifest and prodromal (Pre-M) and manifest HD carriers. In vivo brain [64Cu]-ATSM PET in YAC128 transgenic mouse and striatal and cortical isolated mitochondria were assessed at presymptomatic (3 month-old, mo) and symptomatic (6-12 mo) stages. Pre-M HD carriers exhibited enhanced whole-brain (with exception of caudate) [64Cu]-ATSM labelling, correlating with CAG repeat number. Fibroblasts from Pre-M showed enhanced basal and maximal respiration, proton leak and increased hydrogen peroxide (H2O2) levels, later progressing in manifest HD. Mitochondria from fibroblasts of Pre-M HD carriers also showed reduced circularity, while higher number of mitochondrial DNA copies correlated with maximal respiratory capacity. In vivo animal PET analysis showed increased accumulation of [64Cu]-ATSM in YAC128 mouse striatum. YAC128 mouse (at 3 months) striatal isolated mitochondria exhibited a rise in basal and maximal mitochondrial respiration and in ATP production, and increased complex II and III activities. YAC128 mouse striatal mitochondria also showed enhanced mitochondrial H2O2 levels and circularity, revealed by brain ultrastructure analysis, and defects in Ca2+ handling, supporting increased striatal susceptibility. Data demonstrate both human and mouse mitochondrial overactivity and altered morphology at early HD stages, facilitating redox unbalance, the latter progressing with manifest disease.


Assuntos
Doença de Huntington , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Corpo Estriado/metabolismo , DNA Mitocondrial/metabolismo , Modelos Animais de Doenças , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Peróxido de Hidrogênio/metabolismo , Lactente , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Oxirredução , Prótons , Espécies Reativas de Oxigênio/metabolismo
7.
Neurobiol Dis ; 158: 105479, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390831

RESUMO

Huntington disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the HTT gene that codes for an elongated polyglutamine tract in the huntingtin (HTT) protein. HTT is subject to multiple post-translational modifications (PTMs) that regulate its cellular function. Mutating specific PTM sites within mutant HTT (mHTT) in HD mouse models can modulate disease phenotypes, highlighting the key role of HTT PTMs in the pathogenesis of HD. These findings have led to increased interest in developing small molecules to modulate HTT PTMs in order to decrease mHTT toxicity. However, the therapeutic efficacy of pharmacological modulation of HTT PTMs in preclinical HD models remains largely unknown. HTT is palmitoylated at cysteine 214 by the huntingtin-interacting protein 14 (HIP14 or ZDHHC17) and 14-like (HIP14L or ZDHHC13) acyltransferases. Here, we assessed if HTT palmitoylation should be regarded as a therapeutic target to treat HD by (1) investigating palmitoylation dysregulation in rodent and human HD model systems, (2) measuring the impact of mHTT-lowering therapy on brain palmitoylation, and (3) evaluating if HTT palmitoylation can be pharmacologically modulated. We show that palmitoylation of mHTT and some HIP14/HIP14L-substrates is decreased early in multiple HD mouse models, and that mHTT palmitoylation decreases further with aging. Lowering mHTT in the brain of YAC128 mice is not sufficient to rescue aberrant palmitoylation. However, we demonstrate that mHTT palmitoylation can be normalized in COS-7 cells, in YAC128 cortico-striatal primary neurons and HD patient-derived lymphoblasts using an acyl-protein thioesterase (APT) inhibitor. Moreover, we show that modulating palmitoylation reduces mHTT aggregation and mHTT-induced cytotoxicity in COS-7 cells and YAC128 neurons.


Assuntos
Proteína Huntingtina/genética , Proteína Huntingtina/toxicidade , Lipoilação/efeitos dos fármacos , Lipoilação/genética , Aciltransferases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Cisteína/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos
8.
Lancet Neurol ; 19(11): 930-939, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33098802

RESUMO

BACKGROUND: Huntington's disease is a fatal neurodegenerative disorder that is caused by CAG-CAA repeat expansion, encoding polyglutamine, in the huntingtin (HTT) gene. Current age-of-clinical-onset prediction models for Huntington's disease are based on polyglutamine length and explain only a proportion of the variability in age of onset observed between patients. These length-based assays do not interrogate the underlying genetic variation, because known genetic variants in this region do not alter the protein coding sequence. Given that individuals with identical repeat lengths can present with Huntington's disease decades apart, the search for genetic modifiers of clinical age of onset has become an active area of research. RECENT DEVELOPMENTS: Results from three independent genetic studies of Huntington's disease have shown that glutamine-encoding CAA variants that interrupt DNA CAG repeat tracts, but do not alter polyglutamine length or polyglutamine homogeneity, are associated with substantial differences in age of onset of Huntington's disease in carriers. A variant that results in the loss of CAA interruption is associated with early onset and is particularly relevant to individuals that carry alleles in the reduced penetrance range (ie, CAG 36-39). Approximately a third of clinically manifesting carriers of reduced penetrance alleles, defined by current diagnostics, carry this variant. Somatic repeat instability, modified by interrupted CAG tracts, is the most probable cause mediating this effect. This relationship is supported by genome-wide screens for disease modifiers, which have revealed the importance of DNA-repair genes in Huntington's disease (ie, FAN1, LIG1, MLH1, MSH3, PMS1, and PMS2). WHERE NEXT?: Focus needs to be placed on refining our understanding of the effect of the loss-of-interruption and duplication-of-interruption variants and other interrupting sequence variants on age of onset, and assessing their effect in disease-relevant brain tissues, as well as in diverse population groups, such as individuals from Africa and Asia. Diagnostic tests should be augmented or updated, since current tests do not assess the underlying DNA sequence variation, especially when assessing individuals that carry alleles in the reduced penetrance range. Future studies should explore somatic repeat instability and DNA repair as new therapeutic targets to modify age of onset in Huntington's disease and in other repeat-mediated disorders. Disease-modifying therapies could potentially be developed by therapeutically targeting these processes. Promising approaches include therapeutically targeting the expanded repeat or directly perturbing key DNA-repair genes (eg, with antisense oligonucleotides or small molecules). Targeting the CAG repeat directly with naphthyridine-azaquinolone, a compound that induces contractions, and altering the expression of MSH3, represent two viable therapeutic strategies. However, as a first step, the capability of such novel therapeutic approaches to delay clinical onset in animal models should be assessed.


Assuntos
Terapia Genética/tendências , Variação Genética/genética , Proteína Huntingtina/genética , Doença de Huntington/epidemiologia , Doença de Huntington/genética , Idade de Início , Animais , Terapia Genética/métodos , Humanos , Doença de Huntington/terapia
9.
Nucleic Acids Res ; 48(1): 36-54, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31745548

RESUMO

Huntington disease (HD) is a fatal neurodegenerative disease caused by a pathogenic expansion of a CAG repeat in the huntingtin (HTT) gene. There are no disease-modifying therapies for HD. Artificial microRNAs targeting HTT transcripts for degradation have shown preclinical promise and will soon enter human clinical trials. Here, we examine the tolerability and efficacy of non-selective HTT lowering with an AAV5 encoded miRNA targeting human HTT (AAV5-miHTT) in the humanized Hu128/21 mouse model of HD. We show that intrastriatal administration of AAV5-miHTT results in potent and sustained HTT suppression for at least 7 months post-injection. Importantly, non-selective suppression of huntingtin was generally tolerated, however high dose AAV5-miHTT did induce astrogliosis. We observed an improvement of select behavioural and modest neuropathological HD-like phenotypes in Hu128/21 mice, suggesting a potential therapeutic benefit of miRNA-mediated non-selective HTT lowering. Finally, we also observed that potent reduction of wild type HTT (wtHTT) in Hu21 control mice was tolerated up to 7 months post-injection but may induce impairment of motor coordination and striatal atrophy. Taken together, our data suggests that in the context of HD, the therapeutic benefits of mHTT reduction may outweigh the potentially detrimental effects of wtHTT loss following non-selective HTT lowering.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/terapia , MicroRNAs/genética , Terapia de Alvo Molecular/métodos , Parvovirinae/genética , RNA Mensageiro/genética , Animais , Animais Geneticamente Modificados , Astrócitos/metabolismo , Astrócitos/patologia , Sequência de Bases , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dependovirus , Modelos Animais de Doenças , Dosagem de Genes , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Proteína Huntingtina/antagonistas & inibidores , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , MicroRNAs/administração & dosagem , MicroRNAs/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Parvovirinae/metabolismo , Desempenho Psicomotor , Estabilidade de RNA , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , Repetições de Trinucleotídeos
10.
J Lipid Res ; 60(10): 1733-1740, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31387896

RESUMO

We previously identified a highly consanguineous familial hypercholesterolemia (FH) family demonstrating segregation of the JD Bari mutation in the LDL receptor as well as a putative cholesterol-lowering trait. We aimed to identify genes related to the latter effect. LDL cholesterol (LDLc) values were normalized for FH affectation status, age, and gender. Using genome-wide SNP data, we examined whether known SNPs gleaned from a genome-wide association study could explain the variation observed in LDLc. Four individuals with markedly reduced LDL levels underwent whole exome sequencing. After prioritizing all potential mutations, we identified the most promising candidate genes and tested them for segregation with the lowering trait. We transfected a plasmid carrying the top candidate mutation, microsomal triglyceride transfer protein (MTTP) R634C, into COS-7 cells to test enzymatic activity. The SNP score explained 3% of the observed variability. MTTP R634C showed reduced activity (49.1 nmol/ml) compared with the WT allele (185.8 nmol/ml) (P = 0.0012) and was marginally associated with reduced LDLc in FH patients (P = 0.05). Phenotypic variability in a FH pedigree can only partially be explained by a combination of common SNPs and a rare mutation and a rare variant in the MTTP gene. LDLc variability in FH patients may have nongenetic causes.


Assuntos
Proteínas de Transporte/genética , LDL-Colesterol/sangue , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/genética , Mutação , Linhagem , Polimorfismo de Nucleotídeo Único , Adulto , Animais , Células COS , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Feminino , Ligação Genética , Células Hep G2 , Humanos , Masculino
11.
Am J Hum Genet ; 104(6): 1116-1126, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31104771

RESUMO

Huntington disease (HD) is caused by a CAG repeat expansion in the huntingtin (HTT) gene. Although the length of this repeat is inversely correlated with age of onset (AOO), it does not fully explain the variability in AOO. We assessed the sequence downstream of the CAG repeat in HTT [reference: (CAG)n-CAA-CAG], since variants within this region have been previously described, but no study of AOO has been performed. These analyses identified a variant that results in complete loss of interrupting (LOI) adenine nucleotides in this region [(CAG)n-CAG-CAG]. Analysis of multiple HD pedigrees showed that this LOI variant is associated with dramatically earlier AOO (average of 25 years) despite the same polyglutamine length as in individuals with the interrupting penultimate CAA codon. This LOI allele is particularly frequent in persons with reduced penetrance alleles who manifest with HD and increases the likelihood of presenting clinically with HD with a CAG of 36-39 repeats. Further, we show that the LOI variant is associated with increased somatic repeat instability, highlighting this as a significant driver of this effect. These findings indicate that the number of uninterrupted CAG repeats, which is lengthened by the LOI, is the most significant contributor to AOO of HD and is more significant than polyglutamine length, which is not altered in these individuals. In addition, we identified another variant in this region, where the CAA-CAG sequence is duplicated, which was associated with later AOO. Identification of these cis-acting modifiers have potentially important implications for genetic counselling in HD-affected families.


Assuntos
Códon/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Peptídeos/genética , Expansão das Repetições de Trinucleotídeos/genética , Adolescente , Adulto , Idade de Início , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
12.
Artigo em Inglês | MEDLINE | ID: mdl-30846936

RESUMO

N-methyl-D-aspartate receptors (NMDARs) play a critical role in synaptic signaling, and alterations in the synaptic/extrasynaptic NMDAR balance affect neuronal survival. Studies have shown enhanced extrasynaptic GluN2B-type NMDAR (2B-NMDAR) activity in striatal neurons in the YAC128 mouse model of Huntington disease (HD), resulting in increased cell death pathway activation contributing to striatal vulnerability to degeneration. However, the mechanism(s) of altered GluN2B trafficking remains unclear. Previous work shows that GluN2B palmitoylation on two C-terminal cysteine clusters regulates 2B-NMDAR trafficking to the surface membrane and synapses in cortical neurons. Notably, two palmitoyl acyltransferases (PATs), zDHHC17 and zDHHC13, also called huntingtin-interacting protein 14 (HIP14) and HIP14-like (HIP14L), directly interact with the huntingtin protein (Htt), and mutant Htt disrupts this interaction. Here, we investigated whether GluN2B palmitoylation is involved in enhanced extrasynaptic surface expression of 2B-NMDARs in YAC128 striatal neurons and whether this process is regulated by HIP14 or HIP14L. We found reduced GluN2B palmitoylation in YAC128 striatum, specifically on cysteine cluster II. Consistent with that finding, the palmitoylation-deficient GluN2B Cysteine cluster II mutant exhibited enhanced, extrasynaptic surface expression in striatal neurons from wild-type mice, mimicking increased extrasynaptic 2B-NMDAR observed in YAC128 cultures. We also found that HIP14L palmitoylated GluN2B cysteine cluster II. Moreover, GluN2B palmitoylation levels were reduced in striatal tissue from HIP14L-deficient mice, and siRNA-mediated HIP14L knockdown in cultured neurons enhanced striatal neuronal GluN2B surface expression and susceptibility to NMDA toxicity. Thus, altered regulation of GluN2B palmitoylation levels by the huntingtin-associated PAT HIP14L may contribute to the cell death-signaling pathways underlying HD.

13.
Clin Pharmacol Ther ; 105(2): 402-410, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29999516

RESUMO

Vincristine is an effective chemotherapeutic drug for various cancers, including acute lymphoblastic leukemia (ALL). Unfortunately, clinical utility is restricted by dose-limiting vincristine-induced peripheral neuropathies (VIPN). We sought to determine the association of VIPN with a recently identified risk variant, CEP72 rs924607, and drug absorption, distribution, metabolism, and excretion (ADME) gene variants in pediatric ALL. This was followed by a meta-analysis of pharmacogenomic data from over 500 patients. CEP72 rs924607 was significantly associated with VIPN (P = 0.02; odds ratio (OR) = 3.4). ADME analyses identified associations between VIPN and ABCC1 rs3784867 (P = 5.34 × 10-5 ; OR = 4.9), and SLC5A7 rs1013940 (P = 9.00 × 10-4 ; OR= 8.6); genes involved in vincristine transport and inherited neuropathies, respectively. Meta-analysis identified an association with a variant related to TTPA (rs10504361: P = 6.85 × 10-4 ; OR = 2.0), a heritable neuropathy-related gene. This study provides essential corroboratory evidence for CEP72 rs924607 and highlights the importance of drug transporter and inherited neuropathy genes in VIPN.


Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/genética , Vincristina/farmacocinética , Vincristina/toxicidade , Criança , Pré-Escolar , Biologia Computacional , Feminino , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Farmacogenética , Distribuição Tecidual
14.
Sci Transl Med ; 10(461)2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282695

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin (HTT) protein, resulting in acquisition of toxic functions. Previous studies have shown that lowering mutant HTT has the potential to be broadly beneficial. We previously identified HTT single-nucleotide polymorphisms (SNPs) tightly linked to the HD mutation and developed antisense oligonucleotides (ASOs) targeting HD-SNPs that selectively suppress mutant HTT. We tested allele-specific ASOs in a mouse model of HD. Both early and late treatment reduced cognitive and behavioral impairments in mice. To determine the translational potential of the treatment, we examined the effect of ASO administration on HTT brain expression in nonhuman primates. The treatment induced robust HTT suppression throughout the cortex and limbic system, areas implicated in cognition and psychiatric function. The results suggest that ASOs specifically targeting mutated HTT might have therapeutic effects on HD-mediated cognitive impairments.


Assuntos
Cognição , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Animais , Ansiedade/complicações , Ansiedade/patologia , Ansiedade/fisiopatologia , Atrofia/patologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Feminino , Humanos , Doença de Huntington/complicações , Doença de Huntington/patologia , Sistema Límbico/patologia , Masculino , Proteínas Mutantes/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Primatas
15.
Clin Cancer Res ; 24(8): 1866-1871, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29358504

RESUMO

Purpose: Adverse drug reactions such as ototoxicity, which occurs in approximately one-fifth of adult patients who receive cisplatin treatment, can incur large socioeconomic burdens on patients with testicular cancer who develop this cancer during early adulthood. Recent genome-wide association studies have identified genetic variants in ACYP2 and WFS1 that are associated with cisplatin-induced ototoxicity. We sought to explore the role of these genetic susceptibility factors to cisplatin-induced ototoxicity in patients with testicular cancer.Experimental Design: Extensive clinical and demographic data were collected for 229 patients with testicular cancer treated with cisplatin. Patients were genotyped for two variants, ACYP2 rs1872328 and WFS1 rs62283056, that have previously been associated with hearing loss in cisplatin-treated patients. Analyses were performed to investigate the association of these variants with ototoxicity in this cohort of adult patients with testicular cancer.Results: Pharmacogenomic analyses revealed that ACYP2 rs1872328 was significantly associated with cisplatin-induced ototoxicity [P = 2.83 × 10-3, OR (95% CI):14.7 (2.6-84.2)]. WFS1 rs62283056 was not significantly associated with ototoxicity caused by cisplatin (P = 0.39); however, this variant was associated with hearing loss attributable to any cause [P = 5.67 × 10-3, OR (95% CI): 3.2 (1.4-7.7)].Conclusions: This study has provided the first evidence for the role of ACYP2 rs1872328 in cisplatin-induced ototoxicity in patients with testicular cancer. These results support the use of this information to guide the development of strategies to prevent cisplatin-induced ototoxicity across cancers. Further, this study has highlighted the importance of phenotypic differences in replication studies and has provided further evidence for the role of WFS1 rs62283056 in susceptibility to hearing loss, which may be worsened by cisplatin treatment. Clin Cancer Res; 24(8); 1866-71. ©2018 AACR.


Assuntos
Hidrolases Anidrido Ácido/genética , Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Proteínas de Membrana/genética , Variantes Farmacogenômicos , Neoplasias Testiculares/tratamento farmacológico , Neoplasias Testiculares/genética , Hidrolases Anidrido Ácido/metabolismo , Adulto , Alelos , Antineoplásicos/uso terapêutico , Estudos de Casos e Controles , Cisplatino/uso terapêutico , Variação Genética , Genótipo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Razão de Chances , Testes Farmacogenômicos , Neoplasias Testiculares/diagnóstico
16.
Hum Mol Genet ; 27(2): 239-253, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29121340

RESUMO

Oxidative stress is a prominent feature of Huntington disease (HD), and we have shown previously that reduced levels of hace1 (HECT domain and Ankyrin repeat containing E3 ubiquitin protein ligase 1) in patient striatum may contribute to the pathogenesis of HD. Hace1 promotes the stability of Nrf2 and thus plays an important role in antioxidant response mechanisms, which are dysfunctional in HD. Moreover, hace1 overexpression mitigates mutant huntingtin (mHTT)-induced oxidative stress in vitro through promotion of the Nrf2 antioxidant response. Here, we show that the genetic ablation of hace1 in the YAC128 mouse model of HD accelerates motor deficits and exacerbates cognitive and psychiatric phenotypes in vivo. We find that both the expression of mHTT and the ablation of hace1 alone are sufficient to cause deficits in astrocytic mitochondrial respiration. We confirm the crucial role of hace1 in astrocytes in vivo, since its ablation is sufficient to cause dramatic astrogliosis in wild-type FVB/N mice. Astrogliosis is not observed in the presence of mHTT but a strong dysregulation in the expression of astrocytic markers in HACE1-/- x YAC128 striatum suggests an additive effect of mHTT expression and hace1 loss on this cell type. HACE1-/- x YAC128 mice and primary cells derived from these animals therefore provide model systems that will allow for the further dissection of Nrf2 pathways and astrocyte dysfunction in the context of HD.


Assuntos
Astrócitos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neostriado/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/fisiologia
17.
Ann N Y Acad Sci ; 1407(1): 75-89, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29168242

RESUMO

Copaxone (glatiramer acetate, GA), a structurally and compositionally complex polypeptide nonbiological drug, is an effective treatment for multiple sclerosis, with a well-established favorable safety profile. The short antigenic polypeptide sequences comprising therapeutically active epitopes in GA cannot be deciphered with state-of-the-art methods; and GA has no measurable pharmacokinetic profile and no validated pharmacodynamic markers. The study reported herein describes the use of orthogonal standard and high-resolution physicochemical and biological tests to characterize GA and a U.S. Food and Drug Administration-approved generic version of GA, Glatopa (USA-FoGA). While similarities were observed with low-resolution or destructive tests, differences between GA and USA-FoGA were measured with high-resolution methods applied to an intact mixture, including variations in surface charge and a unique, high-molecular-weight, hydrophobic polypeptide population observed only in some USA-FoGA lots. Consistent with published reports that modifications in physicochemical attributes alter immune-related processes, genome-wide expression profiles of ex vivo activated splenocytes from mice immunized with either GA or USA-FoGA showed that 7-11% of modulated genes were differentially expressed and enriched for immune-related pathways. Thus, differences between USA-FoGA and GA may include variations in antigenic epitopes that differentially activate immune responses. We propose that the assays reported herein should be considered during the regulatory assessment process for nonbiological complex drugs such as GA.


Assuntos
Medicamentos Genéricos/farmacologia , Expressão Gênica/efeitos dos fármacos , Acetato de Glatiramer/farmacologia , Fenômenos do Sistema Imunitário/efeitos dos fármacos , Animais , Células Cultivadas , Fenômenos Químicos , Medicamentos Genéricos/química , Medicamentos Genéricos/farmacocinética , Feminino , Perfilação da Expressão Gênica/métodos , Acetato de Glatiramer/química , Acetato de Glatiramer/farmacocinética , Humanos , Fenômenos do Sistema Imunitário/genética , Imunossupressores/química , Imunossupressores/farmacocinética , Imunossupressores/uso terapêutico , Camundongos Endogâmicos BALB C , Microscopia de Força Atômica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Baço/citologia , Baço/efeitos dos fármacos , Baço/metabolismo , Equivalência Terapêutica
18.
Arterioscler Thromb Vasc Biol ; 37(11): 2147-2155, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28882873

RESUMO

OBJECTIVE: High-density lipoproteins (HDL) are considered to protect against atherosclerosis in part by facilitating the removal of cholesterol from peripheral tissues. However, factors regulating lipid efflux are incompletely understood. We previously identified a variant in adenosine triphosphate-binding cassette transporter A8 (ABCA8) in an individual with low HDL cholesterol (HDLc). Here, we investigate the role of ABCA8 in cholesterol efflux and in regulating HDLc levels. APPROACH AND RESULTS: We sequenced ABCA8 in individuals with low and high HDLc and identified, exclusively in low HDLc probands, 3 predicted deleterious heterozygous ABCA8 mutations (p.Pro609Arg [P609R], IVS17-2 A>G and p.Thr741Stop [T741X]). HDLc levels were lower in heterozygous mutation carriers compared with first-degree family controls (0.86±0.34 versus 1.17±0.26 mmol/L; P=0.005). HDLc levels were significantly decreased by 29% (P=0.01) in Abca8b-/- mice on a high-cholesterol diet compared with wild-type mice, whereas hepatic overexpression of human ABCA8 in mice resulted in significant increases in plasma HDLc and the first steps of macrophage-to-feces reverse cholesterol transport. Overexpression of wild-type but not mutant ABCA8 resulted in a significant increase (1.8-fold; P=0.01) of cholesterol efflux to apolipoprotein AI in vitro. ABCA8 colocalizes and interacts with adenosine triphosphate-binding cassette transporter A1 and further potentiates adenosine triphosphate-binding cassette transporter A1-mediated cholesterol efflux. CONCLUSIONS: ABCA8 facilitates cholesterol efflux and modulates HDLc levels in humans and mice.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol na Dieta/sangue , HDL-Colesterol/sangue , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Animais , Apolipoproteína A-I/sangue , Apolipoproteína B-100/sangue , Transporte Biológico , Biomarcadores/sangue , Células COS , Estudos de Casos e Controles , Chlorocebus aethiops , Análise Mutacional de DNA , Dieta Hiperlipídica , Fezes/química , Feminino , Células HEK293 , Hereditariedade , Heterozigoto , Humanos , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo , Transfecção
19.
Sci Rep ; 7(1): 4947, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28694434

RESUMO

The transgenic mouse model R6/2 exhibits Huntington's disease (HD)-like deficits and basic pathophysiological similarities. We also used the pheochromocytoma-12 (PC12)-cell-line-model to investigate the effect of laquinimod on metabolic activity. Laquinimod is an orally administered immunomodulatory substance currently under development for the treatment of multiple sclerosis (MS) and HD. As an essential effect, increased levels of BDNF were observed. Therefore, we investigated the therapeutic efficacy of laquinimod in the R6/2 model, focusing on its neuroprotective capacity. Weight course and survival were not influenced by laquinimod. Neither were any metabolic effects seen in an inducible PC12-cell-line model of HD. As a positive effect, motor functions of R6/2 mice at the age of 12 weeks significantly improved. Preservation of morphologically intact neurons was found after treatment in the striatum, as revealed by NeuN, DARPP-32, and ubiquitin. Biochemical analysis showed a significant increase in the brain-derived neurotrophic factor (BDNF) level in striatal but not in cortical neurons. The number of mutant huntingtin (mhtt) and inducible nitric oxide synthase (iNOS) positive cells was reduced in both the striatum and motor cortex following treatment. These findings suggest that laquinimod could provide a mild effect on motor function and striatal histopathology, but not on survival. Besides influences on the immune system, influence on BDNF-dependent pathways in HD are discussed.


Assuntos
Quinolonas/farmacologia , Animais , Biomarcadores , Peso Corporal , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Imunofluorescência , Expressão Gênica , Doença de Huntington/tratamento farmacológico , Doença de Huntington/etiologia , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Ratos , Taxa de Sobrevida
20.
JAMA Oncol ; 3(11): 1558-1562, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28448657

RESUMO

IMPORTANCE: Cisplatin-induced ototoxic effects are an important complication that affects testicular cancer survivors as a consequence of treatment. The identification of genetic variants associated with this adverse drug reaction will further our mechanistic understanding of its development and potentially lead to strategies to prevent ototoxic effects. OBJECTIVE: To identify the genetic variants associated with cisplatin-induced ototoxic effects in adult testicular cancer patients. DESIGN, SETTING, AND PARTICIPANTS: This retrospective study was performed by the Canadian Pharmacogenomics Network for Drug Safety using patients recruited from 5 adult oncology treatment centers across Canada. Male patients who were 17 years or older, diagnosed with germ cell testicular cancer, and previously treated with cisplatin-based chemotherapy were recruited from July 2009 to April 2013 using active surveillance methodology. Cisplatin-induced ototoxic effects were independently diagnosed by 2 audiologists. Patients were genotyped for 7907 variants using a custom pharmacogenomic array. Logistic regression was used to identify genetic variants that were significantly associated with ototoxic effects. The validity of these findings was confirmed through independent replication and cell-based functional assays. EXPOSURES: Cisplatin-based chemotherapy. MAIN OUTCOMES AND MEASURES: Cisplatin-induced ototoxic effects. RESULTS: After exclusions, 188 patients (median [interquartile range] age, 31 [24-39] years) were enrolled in this study to form the discovery and replication cohorts. Association and fine-mapping analyses identified a protein-coding variant, rs4788863 in SLC16A5, that was associated with protection against cisplatin-induced ototoxic effects in 2 independent cohorts (combined cohort: odds ratio, 0.06; 95% CI, 0.02-0.22; P = 2.17 × 10-7). Functional validation of this transporter gene revealed that in vitro SLC16A5-silencing altered cellular responses to cisplatin treatment, supporting a role for SLC16A5 in the development of cisplatin-induced ototoxic effects. These results were further supported by the literature, which provided confirmatory evidence for the role that SLC16A5 plays in hearing. CONCLUSIONS AND RELEVANCE: This study has identified a novel association between protein-coding variation in SLC16A5 and cisplatin-induced ototoxic effects. These findings have provided insight into the molecular mechanisms of this adverse drug reaction in adult patients with germ cell testicular cancer. Given that previous studies have shown that cimetidine, an SLC16A5-inhibitor, prevents murine cisplatin-induced ototoxic effects, the findings from this study have important implications for otoprotectant strategies in humans.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Perda Auditiva/induzido quimicamente , Perda Auditiva/genética , Transportadores de Ácidos Monocarboxílicos/genética , Variantes Farmacogenômicos , Neoplasias Testiculares/tratamento farmacológico , Adolescente , Adulto , Canadá , Relação Dose-Resposta a Droga , Predisposição Genética para Doença , Células HeLa , Perda Auditiva/diagnóstico , Perda Auditiva/metabolismo , Humanos , Modelos Logísticos , Masculino , Transportadores de Ácidos Monocarboxílicos/efeitos dos fármacos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Farmacogenética , Testes Farmacogenômicos , Fenótipo , Interferência de RNA , Estudos Retrospectivos , Fatores de Risco , Transfecção , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA