Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 15(11): 1490-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26033953

RESUMO

Stimuli-responsive materials enabling the behavior of the cells that reside within them to be controlled are vital for the development of instructive tissue scaffolds for tissue engineering. Herein, we describe the preparation of conductive silk foam-based bone tissue scaffolds that enable the electrical stimulation of human mesenchymal stem cells (HMSCs) to enhance their differentiation toward osteogenic outcomes.


Assuntos
Substitutos Ósseos/química , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Seda/química , Alicerces Teciduais/química , Humanos , Células-Tronco Mesenquimais/citologia
2.
Biomaterials ; 35(12): 3794-802, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24484674

RESUMO

The goal of this study was to explore quantitative assessments of mineralized silk protein biomaterial films by co-cultures of human mesenchymal stem cell-derived osteoblasts and human acute monocytic leukemia cell line-derived osteoclasts during long-term culture (8-32 weeks). The remodeled films were quantitatively assessed using three different techniques during this extended cultivation to provide more comprehensive insight into the impact of co-cultures on surface remodeling. Scanning electron microscopy (SEM) with three dimensional surface reconstructions was used to quantitatively determine various surface morphological features and measures of roughness indicative of remodeling by the cells. Additionally, reconstructed surfaces were converted to depth images for Fourier analysis to quantify the potential fractal organization of biomineralization. The long-term remodeled films were also imaged using confocal reflectance microscopy and micro-computed tomography (micro-CT) to further quantify morphological changes. Films remodeled in co-culture demonstrated increased roughness parameters, fractal organization, and volume compared to films remodeled by osteoblasts alone. The combination of these techniques to quantify remodeling of mineralized protein films shows promise for quantifying processes related to mineralized surfaces.


Assuntos
Osteoblastos/citologia , Osteoclastos/citologia , Seda , Técnicas de Cocultura , Análise de Fourier , Humanos , Microscopia Eletrônica de Varredura
3.
Acta Biomater ; 10(1): 486-93, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24096150

RESUMO

The goal of this study was to explore the effects of osteoporosis-related therapeutics on bone remodeling in vitro. A previously established bone-tissue mimetic system consisting of silk protein biomaterials in combination with hydroxyapatite and human cells was used for the study. Silk-hydroxyapatite films were pre-complexed with the non-nitrogenous bisphosphonate clodronate or the nitrogenous bisphosphonate alendronate and cultured with THP-1 human acute monocytic leukemia cell line-derived osteoclasts, human mesenchymal stem cell derived osteoblasts or a direct co-culture of the two cell types. Metabolic activity, calcium deposition and alkaline phosphatase activity were assessed over 12 weeks, and reconstructed remodeled biomaterial surfaces were also evaluated for quantitative morphological changes. Increased metabolic activity and increased roughness were found on the clodronate-complexed biomaterial substrates remodeled by osteoblasts and co-cultures of osteoblasts with osteoclasts, even at doses high enough to cause a 90% decrease in osteoclast metabolic activity. Films complexed with low doses of alendronate resulted in increased metabolic activity and calcium deposition by osteoblasts, while higher doses were similarly toxic among osteoclasts, osteoblasts and co-cultures. These results point to the utility of these well-defined bone-mimetic in vitro cultures as useful screens for therapeutics for bone-related diseases, particularly with the ability to conduct studies for extended duration (here for 12 weeks) and with pre-complexed drugs to mimic conditions found in vivo.


Assuntos
Alendronato/farmacologia , Ácido Clodrônico/farmacologia , Durapatita/farmacologia , Osteoblastos/citologia , Osteoclastos/citologia , Seda/farmacologia , Animais , Bombyx , Cálcio/metabolismo , Técnicas de Cocultura , Difosfonatos/farmacologia , Humanos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Propriedades de Superfície
4.
Sci Rep ; 3: 3432, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24305550

RESUMO

The non-invasive high-resolution spatial mapping of cell metabolism within tissues could provide substantial advancements in assessing the efficacy of stem cell therapy and understanding tissue development. Here, using two-photon excited fluorescence microscopy, we elucidate the relationships among endogenous cell fluorescence, cell redox state, and the differentiation of human mesenchymal stem cells into adipogenic and osteoblastic lineages. Using liquid chromatography/mass spectrometry and quantitative PCR, we evaluate the sensitivity of an optical redox ratio of FAD/(NADH + FAD) to metabolic changes associated with stem cell differentiation. Furthermore, we probe the underlying physiological mechanisms, which relate a decrease in the redox ratio to the onset of differentiation. Because traditional assessments of stem cells and engineered tissues are destructive, time consuming, and logistically intensive, the development and validation of a non-invasive, label-free approach to defining the spatiotemporal patterns of cell differentiation can offer a powerful tool for rapid, high-content characterization of cell and tissue cultures.


Assuntos
Diferenciação Celular , Metabolômica/métodos , Microscopia de Fluorescência , Imagem Molecular/métodos , Células-Tronco/citologia , Células-Tronco/metabolismo , Adipogenia , Ácidos Graxos/biossíntese , Humanos , Células-Tronco Mesenquimais , Mitocôndrias/metabolismo , Modelos Biológicos , NAD/metabolismo , Oxirredução
5.
Biomacromolecules ; 14(7): 2179-88, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23745709

RESUMO

Ceramic scaffolds such as biphasic calcium phosphate (BCP) have been widely studied and used for bone regeneration, but their brittleness and low mechanical strength are major drawbacks. We report the first systematic study on the effect of silk coating in improving the mechanical and biological properties of BCP scaffolds, including (1) optimization of the silk coating process by investigating multiple coatings, and (2) in vitro evaluation of the osteogenic response of human mesenchymal stem cells (hMSCs) on the coated scaffolds. Our results show that multiple silk coatings on BCP ceramic scaffolds can achieve a significant coating effect to approach the mechanical properties of native bone tissue and positively influence osteogenesis by hMSCs over an extended period. The silk coating method developed in this study represents a simple yet effective means of reinforcement that can be applied to other types of ceramic scaffolds with similar microstructure to improve osteogenic outcomes.


Assuntos
Hidroxiapatitas/farmacologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Seda/farmacologia , Engenharia Tecidual/métodos , Adulto , Fosfatase Alcalina/genética , Regeneração Óssea , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Cerâmica/química , Colágeno Tipo I/genética , Expressão Gênica , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/genética , Humanos , Hidroxiapatitas/química , Sialoproteína de Ligação à Integrina/genética , Masculino , Teste de Materiais , Células-Tronco Mesenquimais/enzimologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Porosidade , Seda/química , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA