Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 16(9): 3831-3841, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31381351

RESUMO

Boron neutron capture therapy (BNCT) is a therapeutic modality which has been used for the treatment of cancers, including brain and head and neck tumors. For effective treatment via BNCT, efficient and selective delivery of a high boron dose to cancer cells is needed. Prostate-specific membrane antigen (PSMA) is a target for prostate cancer imaging and drug delivery. In this study, we conjugated boronic acid or carborane functional groups to a well-established PSMA inhibitor scaffold to deliver boron to prostate cancer cells and prostate tumor xenograft models. Eight boron-containing PSMA inhibitors were synthesized. All of these compounds showed a strong binding affinity to PSMA in a competition radioligand binding assay (IC50 from 555.7 to 20.3 nM). Three selected compounds 1a, 1d, and 1f were administered to mice, and their in vivo blocking of 68Ga-PSMA-11 uptake was demonstrated through a positron emission tomography (PET) imaging and biodistribution experiment. Biodistribution analysis demonstrated boron uptake of 4-7 µg/g in 22Rv1 prostate xenograft tumors and similar tumor/muscle ratios compared to the ratio for the most commonly used BNCT compound, 4-borono-l-phenylalanine (BPA). Taken together, these data suggest a potential role for PSMA targeted BNCT agents in prostate cancer therapy following suitable optimization.


Assuntos
Antígenos de Superfície/metabolismo , Terapia por Captura de Nêutron de Boro/métodos , Ácidos Borônicos/química , Ácidos Borônicos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Glutamato Carboxipeptidase II/antagonistas & inibidores , Glutamato Carboxipeptidase II/metabolismo , Neoplasias da Próstata/radioterapia , Animais , Compostos de Boro/química , Compostos de Boro/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ácido Edético/análogos & derivados , Ácido Edético/farmacocinética , Isótopos de Gálio , Radioisótopos de Gálio , Humanos , Concentração Inibidora 50 , Ligantes , Masculino , Camundongos , Camundongos Nus , Oligopeptídeos/farmacocinética , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/farmacocinética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/patologia , Radiossensibilizantes/química , Radiossensibilizantes/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Chemistry ; 25(51): 11842-11846, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31338914

RESUMO

Alterations in Zn2+ concentration are seen in normal tissues and in disease states, and for this reason imaging of Zn2+ is an area of active investigation. Herein, enriched [1-13 C]cysteine and [1-13 C2 ]iminodiacetic acid were developed as Zn2+ -specific imaging probes using hyperpolarized 13 C magnetic resonance spectroscopy. [1-13 C]cysteine was used to accurately quantify Zn2+ in complex biological mixtures. These sensors can be employed to detect Zn2+ via imaging mechanisms including changes in 13 C chemical shift, resonance linewidth, or T1 .

3.
Bioconjug Chem ; 27(1): 130-42, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26603218

RESUMO

Developing new strategies to rapidly incorporate the fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) core into biological targeting vectors in radiopharmaceuticals continues to expand as molecules become more complex and as efforts to minimize nonspecific binding increase. This work examines a novel isothiocyanate-functionalized bifunctional chelate based on 2,2'-dipicolylamine (DPA) specifically designed for complexing the fac-[M(I)(CO)3](+) core. Two strategies (postlabeling and prelabeling) were explored using the isothiocyanate-functionalized DPA to determine the effectiveness of assembly on the overall yield and purity of the complex with amine containing biomolecules. A model amino acid (lysine) examined (1) amine conjugation of isothiocyanate-functionalized DPA followed by complexation with fac-[M(I)(CO)3](+) (postlabeling) and (2) complexation of fac-[M(I)(CO)3](+) with isothiocyanate-functionalized DPA followed by amine conjugation (prelabeling). Conducted with stable Re and radioactive (99m)Tc analogs, both strategies formed the product in good to excellent yields under macroscopic and radiotracer concentrations. A synthetic peptide (AE105) which targets an emerging biomarker in CaP prognosis, urokinase-type plasminogen activator receptor (uPAR), was also explored using the isothiocyanate-functionalized DPA strategy. In vitro PC-3 (uPAR+) cell uptake assays with the (99m)Tc-labeled peptide (8a) showed 4.2 ± 0.5% uptake at 4 h. In a murine model bearing PC-3 tumor xenografts, in vivo biodistribution of 8a led to favorable tumor uptake (3.7 ± 0.7% ID/g) at 4 h p.i. with relatively low accumulation (<2% ID/g) in normal organs not associated with normal peptide excretion. These results illustrate the promise of the isothiocyanate-functionalized approach for labeling amine containing biological targeting vectors with fac-[M(I)(CO)3](+).


Assuntos
Quelantes/química , Quelantes/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Compostos Radiofarmacêuticos/farmacocinética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Nus , Terapia de Alvo Molecular/métodos , Compostos de Organotecnécio/química , Peptídeos/química , Compostos Radiofarmacêuticos/química , Rênio/química , Tecnécio/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Inorg Chem ; 54(4): 1528-34, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25590985

RESUMO

While a number of chelate strategies have been developed for the organometallic precursor fac-[M(I)(OH2)3(CO)3](+) (M = Re, (99m)Tc), a unique challenge has been to improve the overall function and performance of these complexes for in vivo and in vitro applications. Since its discovery, fac-[M(I)(OH2)3(CO)3](+) has served as an essential scaffold for the development of new targeted (99m)Tc based radiopharmaceuticals due to its labile aquo ligands. However, the lipophilic nature of the fac-[M(I)(CO)3](+) core can influence the in vivo pharmacokinetics and biodistribution of the complexes. In an effort to understand and improve this behavior, monosubstituted pyridine ligands were used to assess the impact of donor nitrogen basicity on binding strength and stability of fac-[M(I)(CO)3](+) in a 2 + 1 labeling strategy. A series of Re and (99m)Tc complexes were synthesized with picolinic acid as a bidentate ligand and 4-substituted pyridine ligands. These complexes were designed to probe the effect of pKa from the monodentate pyridine ligand both at the macro scale and radiochemical concentrations. Comparison of X-ray structural data and radiochemical solution experiments clearly indicate an increase in overall yield and stability as pyridine basicity increased.


Assuntos
Monóxido de Carbono/química , Compostos Organometálicos/química , Piridinas/química , Rênio/química , Tecnécio/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/síntese química , Estereoisomerismo
5.
Bioconjug Chem ; 25(3): 579-92, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24568284

RESUMO

The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction was used to incorporate alkyne-functionalized dipicolylamine (DPA) ligands (1 and 3) for fac-[M(I)(CO)3](+) (M = Re/(99m)Tc) complexation into an α-melanocyte stimulating hormone (α-MSH) peptide analogue. A novel DPA ligand with carboxylate substitutions on the pyridyl rings (3) was designed to increase the hydrophilicity and to decrease in vivo hepatobiliary retention of fac-[(99m)Tc(I)(CO)3](+) complexes used in single photon emission computed tomography (SPECT) imaging studies with targeting biomolecules. The fac-[Re(I)(CO)3(3)] complex (4) was used for chemical characterization and X-ray crystal analysis prior to radiolabeling studies between 3 and fac-[(99m)Tc(I)(OH2)3(CO)3](+). The corresponding (99m)Tc complex (4a) was obtained in high radiochemical yields, was stable in vitro for 24 h during amino acid challenge and serum stability assays, and showed increased hydrophilicity by log P analysis compared to an analogous complex with nonfunctionalized pyridine rings (2a). An α-MSH peptide functionalized with an azide was labeled with fac-[M(I)(CO)3](+) using both click, then chelate (CuAAC reaction with 1 or 3 followed by metal complexation) and chelate, then click (metal complexation of 1 and 3 followed by CuAAC with the peptide) strategies to assess the effects of CuAAC conditions on fac-[M(I)(CO)3](+) complexation within a peptide framework. The peptides from the click, then chelate strategy had different HPLC tR's and in vitro stabilities compared to those from the chelate, then click strategy, suggesting nonspecific coordination of fac-[M(I)(CO)3](+) using this synthetic route. The fac-[M(I)(CO)3](+)-complexed peptides from the chelate, then click strategy showed >90% stability during in vitro challenge conditions for 6 h, demonstrated high affinity and specificity for the melanocortin 1 receptor (MC1R) in IC50 analyses, and led to moderately high uptake in B16F10 melanoma cells. Log P analysis of the (99m)Tc-labeled peptides confirmed the enhanced hydrophilicity of the peptide bearing the novel, carboxylate-functionalized DPA chelate (10a') compared to the peptide with the unmodified DPA chelate (9a'). In vivo biodistribution analysis of 9a' and 10a' showed moderate tumor uptake in a B16F10 melanoma xenograft mouse model with enhanced renal uptake and surprising intestinal uptake for 10a' compared to predominantly hepatic accumulation for 9a'. These results, coupled with the versatility of CuAAC, suggests this novel, hydrophilic chelate can be incorporated into numerous biomolecules containing azides for generating targeted fac-[M(I)(CO)3](+) complexes in future studies.


Assuntos
Aminas/química , Monóxido de Carbono/química , Complexos de Coordenação/farmacocinética , Melanoma Experimental/diagnóstico , Ácidos Picolínicos/química , Compostos Radiofarmacêuticos/farmacocinética , Rênio/química , Tecnécio/química , alfa-MSH/química , Animais , Química Click , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Células Tumorais Cultivadas
6.
Mol Pharm ; 11(4): 1208-17, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24524409

RESUMO

Integrin αvß6 is overexpressed in a variety of cancers, and its expression is often associated with poor prognosis. Therefore, there is a need to develop affinity reagents for noninvasive imaging of integrin αvß6 expression since it may provide early cancer diagnosis, more accurate prognosis, and better treatment planning. We recently engineered and validated highly stable cystine knot peptides that selectively bind integrin αvß6 with no cross-reactivity to integrins αvß5, α5ß1, or αvß3, also known to be overexpressed in many cancers. Here, we developed a single photon emission computed tomography (SPECT) probe for imaging integrin αvß6 positive tumors. Cystine knot peptide, S02, was first conjugated with a single amino acid chelate (SAAC) and labeled with [(99m)Tc(H2O)3(CO)3](+). The resulting probe, (99m)Tc-SAAC-S02, was then evaluated by in vitro cell uptake studies using two αvß6 positive cell lines (human lung adenocarcinoma cell line HCC4006 and pancreatic cancer cell line BxPC-3) and two αvß6 negative cell lines (human lung adenocarcinoma cell line H838 and human embryonic kidney cell line 293T). Next, SPECT/CT and biodistribution studies were performed in nude mice bearing HCC4006 and H838 tumor xenografts to evaluate the in vivo performance of (99m)Tc-SAAC-S02. Significant differences in the uptake of (99m)Tc-SAAC-S02 were observed in αvß6 positive vs negative cells (P < 0.05). Biodistribution and small animal SPECT/CT studies revealed that (99m)Tc-SAAC-S02 accumulated to moderate levels in antigen positive tumors (∼2% ID/g at 1 and 6 h postinjection, n = 3 or 4/group). Moreover, the probe demonstrated tumor-to-background tissue ratios of 6.81 ± 2.32 (tumor-to-muscle) and 1.63 ± 0.18 (tumor-to-blood) at 6 h postinjection in αvß6 positive tumor xenografts. Co-incubation of the probe with excess amount of unlabeled S02 as a blocking agent demonstrated significantly reduced tumor uptake, which is consistent with specific binding to the target. Renal filtration was the main route of clearance. In conclusion, knottin peptides are excellent scaffolds for which to develop highly stable imaging probes for a variety of oncological targets. (99m)Tc-SAAC-S02 demonstrates promise for use as a SPECT agent to image integrin αvß6 expression in living systems.


Assuntos
Antígenos de Neoplasias/análise , Motivos Nó de Cisteína , Integrinas/análise , Neoplasias Experimentais/diagnóstico por imagem , Compostos de Organotecnécio , Peptídeos , Compostos Radiofarmacêuticos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Dados de Sequência Molecular , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA