Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 131(5)2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29378918

RESUMO

TMEM55a (also known as PIP4P2) is an enzyme that dephosphorylates the phosphatidylinositol (PtdIns) PtdIns(4,5)P2 to form PtdIns(5)P in vitro However, the in vivo conversion of the polyphosphoinositide into PtdIns(5)P by the phosphatase has not yet been demonstrated, and the role of TMEM55a remains poorly understood. Here, we found that mouse macrophages (Raw264.7) deficient in TMEM55a showed an increased engulfment of large particles without affecting the phagocytosis of Escherichia coli Transfection of a bacterial phosphatase with similar substrate specificity to TMEM55a, namely IpgD, into Raw264.7 cells inhibited the engulfment of IgG-erythrocytes in a manner dependent on its phosphatase activity. In contrast, cells transfected with PIP4K2a, which catalyzes PtdIns(4,5)P2 production from PtdIns(5)P, increased phagocytosis. Fluorescent TMEM55a transfected into Raw264.7 cells was found to mostly localize to the phagosome. The accumulation of PtdIns(4,5)P2, PtdIns(3,4,5)P3 and F-actin on the phagocytic cup was increased in TMEM55a-deficient cells, as monitored by live-cell imaging. Phagosomal PtdIns(5)P was decreased in the knockdown cells, but the augmentation of phagocytosis in these cells was unaffected by the exogenous addition of PtdIns(5)P. Taken together, these results suggest that TMEM55a negatively regulates the phagocytosis of large particles by reducing phagosomal PtdIns(4,5)P2 accumulation during cup formation.


Assuntos
Fagocitose/genética , Fagossomos/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas de Transporte Vesicular/metabolismo , Animais , Membrana Celular/metabolismo , Macrófagos/metabolismo , Camundongos , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositóis/metabolismo , Ligação Proteica , Células RAW 264.7
2.
Exp Cell Res ; 357(2): 252-259, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28552585

RESUMO

The findings of this study suggest that the phosphoinositide phosphatase Sac3 maintains the protein level of scavenger receptor A (SR-A) and regulates foam cell formation. RAW264.7 macrophages were transfected with short hairpin RNAs that target Sac3. The knockdown decreased the level of the cell surface SR-A and suppressed the acetylated low density lipoprotein-induced foam cell formation. The associated regulator of PIKfyve (ArPIKfyve) is a scaffold protein that protects Sac3 from proteasome-dependent degradation. The knockdown of ArPIKfyve decreased Sac3, cell surface SR-A, and foam cell formation. The knockdown of PIKfyve had no effect on SR-A protein levels. These results suggest that the ArPIKfyve-Sac3 complex regulates SR-A protein levels independently of its effect on PIKfyve activity.


Assuntos
Flavoproteínas/metabolismo , Gotículas Lipídicas/metabolismo , Macrófagos/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Receptores Depuradores/metabolismo , Animais , Membrana Celular/metabolismo , Flavoproteínas/genética , Técnicas de Silenciamento de Genes/métodos , Humanos , Camundongos , Fosfatases de Fosfoinositídeos/genética , Monoéster Fosfórico Hidrolases/genética , Células RAW 264.7 , Receptores Depuradores Classe A/metabolismo
3.
Innate Immun ; 23(4): 401-409, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28409542

RESUMO

The relative abundance of phosphoinositide (PI) species on the phagosome membrane fluctuates over the course of phagocytosis. PtdIns(3,4,5)P3 and PtdIns(3,4)P2 rapidly increase in the forming of the phagocytic cup, following which they disappear after sealing of the cup. In the present study, we monitored the clearance of these PI species using the enhanced green fluorescent protein-fused pleckstrin homology domain of Akt, a fluorescence probe that binds both PtdIns(3,4,5)P3 and PtdIns(3,4)P2 in Raw 264.7 macrophages. The clearance of PIs was much faster when the phagocytosed particles were coated with IgG. The effect of IgG was not observed in the macrophages deficient in FcγRIIb, an inhibitory IgG receptor. To identify the lipid phosphatases responsible for the FcγRIIb-accelerated PI clearance, we prepared a panel of lipid phosphatase-deficient cells. The lack of a PI 5-phosphatase Src homology 2 domain-containing inositol-5-phosphatase (SHIP)1 or SHIP2 impaired the FcγRIIb-accelerated clearance of PIs. The lack of a PI 4-phosphatase Inpp4a also impaired the accelerated PIs clearance. In the FcγRIIb- and Inpp4a-deficient cells, acidification of the formed phagosome was slowed. These results suggested that FcγRIIb drives the sequential dephosphorylation system comprising SHIPs and Inpp4a, and accelerates phagosome acidification.


Assuntos
Macrófagos/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fagocitose , Fagossomos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Receptores de IgG/metabolismo , Animais , Concentração de Íons de Hidrogênio , Imunoglobulina G/metabolismo , Macrófagos/imunologia , Camundongos , Proteína Oncogênica v-akt/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Ligação Proteica , Células RAW 264.7 , RNA Interferente Pequeno/genética , Receptores de IgG/genética
4.
Innate Immun ; 22(6): 444-51, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27252170

RESUMO

Phosphatidylinositol 3-kinase (PI3K)/Akt signaling has been implicated in the anti-inflammatory response in a mouse model of endotoxemia and sepsis. The present study focused on the role of inositol polyphosphate-4-phosphatase type I (Inpp4a), which dephosphorylates PtdIns(3,4)P2 to PtdIns(3)P, in bacterial infections. We prepared myeloid cell-specific Inpp4a-conditional knockout mice. Macrophages from these mice showed increased Akt phosphorylation and reduced production of inflammatory cytokines in response to LPS or Escherichia coli in vitro The Inpp4a knockout mice survived for a shorter time than wild type mice after i.p. infection with E. coli, with less production of inflammatory cytokines. Additionally, E. coli clearance from blood and lung was significantly impaired in the knockout mice. A likely mechanism is that the Inpp4a-catalyzed dephosphorylation of PtdIns(3,4)P2 down-regulates Akt pathways, which, in turn, increases the production of inflammatory mediators. This mechanism at least fits the decreased E. coli clearance and short survival in the Inpp4a knockout mice.


Assuntos
Infecções por Escherichia coli/imunologia , Escherichia coli/fisiologia , Pulmão/imunologia , Macrófagos Peritoneais/fisiologia , Peritonite/imunologia , Monoéster Fosfórico Hidrolases/metabolismo , Choque Séptico/imunologia , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Pulmão/microbiologia , Macrófagos Peritoneais/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peritonite/genética , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Choque Séptico/genética , Transdução de Sinais
5.
PLoS One ; 10(11): e0142091, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26535897

RESUMO

Phagocytosis is a highly conserved process whereby phagocytic cells engulf pathogens and apoptotic bodies. The present study focused on the role of inositol polyphosphate-4-phosphatase type I (Inpp4a) in phagocytosis. Raw264.7 cells that express shRNA against Inpp4a (shInpp4a cells) showed significantly increased phagocytic activity. The introduction of shRNA-resistant human Inpp4a abolished this increase. Macrophages from Inpp4a knockout mice showed similar increases in the phagocytic activity. Inpp4a was recruited to the phagosome membrane by a mechanism other than the direct interaction with Rab5. PtdIns(3,4)P2 increased on the phagosome of shInpp4a cells, while PtdIns(3)P significantly decreased. The results indicate that Inpp4a negatively regulates the phagocytic activity of macrophages as a member of the sequential dephosphorylation system that metabolizes phagosomal PtdIns(3,4,5)P3 to PtdIns(3)P.


Assuntos
Membrana Celular/metabolismo , Macrófagos/metabolismo , Fagocitose , Fagossomos/metabolismo , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia , Animais , Western Blotting , Células Cultivadas , Feminino , Humanos , Macrófagos/citologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fosforilação
6.
PLoS One ; 9(10): e111698, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25357130

RESUMO

In this study, we present findings that suggest that PI3K-C2α, a member of the class II phosphoinositide 3-kinase (PI3K) subfamily, regulates the process of FcεRI-triggered degranulation. RBL-2H3 cells were transfected with shRNA targeting PI3K-C2α. The knockdown impaired the FcεRI-induced release of a lysosome enzyme, ß-hexosaminidase, without affecting the intracellular Ca2+ mobilization. The release of mRFP-tagged neuropeptide-Y, a reporter for the regulated exocytosis, was also decreased in the PI3K-C2α-deficient cells. The release was increased significantly by the expression of the siRNA-resistant version of PI3K-C2α. In wild-type cells, FcεRI stimulation induced the formation of large vesicles, which were associated with CD63, a marker protein of secretory granules. On the vesicles, the existence of PI3K-C2α and PtdIns(3,4)P2 was observed. These results indicated that PI3K-C2α and its product PtdIns(3,4)P2 may play roles in the secretory process.


Assuntos
Antígenos/farmacologia , Degranulação Celular/efeitos dos fármacos , Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Animais , Cálcio/farmacologia , Linhagem Celular Tumoral , Classe II de Fosfatidilinositol 3-Quinases/genética , Técnicas de Silenciamento de Genes , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Neuropeptídeo Y/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Receptores de IgE/metabolismo , Transfecção , beta-N-Acetil-Hexosaminidases/metabolismo
7.
Biochem J ; 464(3): 365-75, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25269936

RESUMO

Phosphoinositide 5'-phosphatases have been implicated in the regulation of phagocytosis. However, their precise roles in the phagocytic process are poorly understood. We prepared RAW264.7 macrophages deficient in Inpp5e (shInpp5e) to clarify the role of this lipid phosphatase. In the shInpp5e cells, the uptake of solid particles was increased and the rate of phagosome acidification was accelerated. As expected, levels of PtdIns(3,4,5)P3 and PtdIns(3,4)P2 were increased and decreased respectively, on the forming phagocytic cups of these cells. Unexpectedly, the most prominent consequence of the Inpp5e deficiency was the decreased accumulation of PtdIns3P and Rab5 on the phagosome. The expression of a constitutively active form of Rab5b in the shInpp5e cells rescued the PtdIns3P accumulation. Rab20 has been reported to regulate the activity of Rabex5, a guanine nucleotide exchange factor for Rab5. The association of Rab20 with the phagosome was remarkably abrogated in the shInpp5e cells. Over-expression of Rab20 increased phagosomal PtdIns3P accumulation and delayed its elimination. These results suggest that Inpp5e, through functional interactions with Rab20 on the phagosome, activates Rab5, which, in turn, increases PtdIns3P and delays phagosome acidification.


Assuntos
Fagossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Ácidos/metabolismo , Animais , Células Cultivadas , Macrófagos/metabolismo , Camundongos , Fagocitose/genética , Ligação Proteica , Transfecção
8.
J Pharmacol Sci ; 120(4): 270-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23149576

RESUMO

Studies with knockout mice have indicated that the only isoform of phosphoinositide 3-kinase (PI3K) functioning in the oxidative burst of mouse neutrophils in response to heterotrimeric guanine nucleotide-binding protein-coupled receptor (GPCR) agonists is a class-IB PI3K, p110γ. In the present study, we observed that the cells from p110γ(-/-) mice gain a response to N-formyl-Met-Leu-Phe (fMLP) after priming with cytochalasin E. Even the unprimed cells, which show no response to fMLP, produce a significant amount of superoxide, when an effective agonist of the mouse-type fMLP receptors, Trp-Lys-Tyr-Met-Val-D-Met, is used to stimulate the cells. These results suggested that the class-IA isoforms (p110α, p110ß, and p110δ) of PI3K are sufficient to trigger and maintain superoxide production. Examination of the effects of isoform-specific inhibitors suggested that the p110ß isoform is the primary PI3K triggering the response to GPCR agonists when p110γ is absent.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/fisiologia , Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Neutrófilos/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Superóxidos/metabolismo , Animais , Células Cultivadas , Isoenzimas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/agonistas
9.
FEBS Lett ; 586(22): 4010-5, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23068606

RESUMO

PtdIns(3)P (phosphatidylinositol 3-phosphate) is a signaling molecule important for phagosome maturation. The major role of Vps34 in production of phagosomal PtdIns(3)P has been indicated. However, the fate of the newly generated PtdIns(3)P has not been well described. Here we show that elimination of PtdIns(3)P from phagosomal membrane was significantly delayed in RAW264.7 macrophages lacking PTEN or PIKfyve. In the PTEN-deficient cells treated with a PIKfyve inhibitor, degradation of PtdIns(3)P was almost lost, indicating that PTEN and PIKfyve are two major players in phagosomal PtdIns(3)P metabolism.


Assuntos
PTEN Fosfo-Hidrolase/metabolismo , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Aminopiridinas/farmacologia , Animais , Linhagem Celular , Feminino , Compostos Heterocíclicos com 3 Anéis/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Microscopia de Fluorescência , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Interferência de RNA
10.
PLoS One ; 6(10): e26836, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22053215

RESUMO

Synthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG) stimulate innate immune responses. Phosphoinositide 3-kinase (PI3K) has been implicated in CpG-induced immune activation; however, its precise role has not yet been clarified. CpG-induced production of IL-10 was dramatically increased in macrophages deficient in PI3Kγ (p110γ(-/-)). By contrast, LPS-induced production of IL-10 was unchanged in the cells. CpG-induced, but not LPS-induced, IL-10 production was almost completely abolished in SCID mice having mutations in DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Furthermore, wortmannin, an inhibitor of DNA-PKcs, completely inhibited CpG-induced IL-10 production, both in wild type and p110γ(-/-) cells. Microscopic analyses revealed that CpG preferentially localized with DNA-PKcs in p110γ(-/-) cells than in wild type cells. In addition, CpG was preferentially co-localized with the acidic lysosomal marker, LysoTracker, in p110γ(-/-) cells, and with an early endosome marker, EEA1, in wild type cells. Over-expression of p110γ in Cos7 cells resulted in decreased acidification of CpG containing endosome. A similar effect was reproduced using kinase-dead mutants, but not with a ras-binding site mutant, of p110γ. Thus, it is likely that p110γ, in a manner independent of its kinase activity, inhibits the acidification of CpG-containing endosomes. It is considered that increased acidification of CpG-containing endosomes in p110γ(-/-) cells enforces endosomal escape of CpG, which results in increased association of CpG with DNA-PKcs to up-regulate IL-10 production in macrophages.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Interleucina-10/biossíntese , Espaço Intracelular/enzimologia , Macrófagos/enzimologia , Oligodesoxirribonucleotídeos/metabolismo , Ácidos/metabolismo , Androstadienos/farmacologia , Animais , Cátions , Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Feminino , Espaço Intracelular/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Lipossomos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Transporte Proteico/efeitos dos fármacos , Wortmanina
11.
Biochem J ; 423(1): 99-108, 2009 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-19604150

RESUMO

PI3K (phosphoinositide 3-kinase) alpha has been implicated in phagocytosis and fluid-phase pinocytosis in macrophages. The subtype-specific role of PI3K in these processes is poorly understood. To elucidate this issue, we made Raw 264.7 cells (a mouse leukaemic monocyte-macrophage cell line) deficient in each of the class-I PI3K catalytic subunits: p110alpha, p110beta, p110delta and p110gamma. Among these cells, only the p110alpha-deficient cells exhibited lower phagocytosis of opsonized and non-opsonized zymosan. The p110alpha-deficient cells also showed the impaired phagocytosis of IgG-opsonized erythrocytes and the impaired fluid-phase pinocytosis of dextran (molecular mass of 40 kDa). Receptor-mediated pinocytosis of DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate)-labelled acetylated low-density lipoprotein and fluid-phase pinocytosis of Lucifer Yellow (molecular mass of 500 Da) were resistant to p110alpha depletion. None of these processes were impaired in cells lacking p110beta, p110delta or p110gamma, but were susceptible to a pan-PI3K inhibitor wortmannin. In cells deficient in the enzymes catalysing PtdIns(3,4,5)P3 breakdown [PTEN (phosphatase and tensin homologue deleted on chromosome 10) or SHIP-1 (Src-homology-2-domain-containing inositol phosphatase-1)], uptake of IgG-opsonized particles was enhanced. These results indicated that phagocytosis and fluid-phase pinocytosis of larger molecules are dependent on the lipid kinase activity of p110alpha, whereas pinocytosis via clathrin-coated and small non-coated vesicles may depend on subtypes of PI3Ks other than class I.


Assuntos
Macrófagos/metabolismo , Fagocitose/genética , Fosfatidilinositol 3-Quinases/fisiologia , Pinocitose/genética , Animais , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases , Feminino , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Zimosan/química , Zimosan/metabolismo
12.
Cancer Sci ; 100(8): 1494-501, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19432881

RESUMO

Oral administration of hot-water extract of Spirulina, cyanobacterium Spirulina platensis, leads to augmentation of NK cytotoxicity in humans. Here, we applied to syngeneic tumor-implant mice (C57BL/6 versus B16 melanoma) Spirulina to elucidate the mechanism of raising antitumor NK activation. A B16D8 subcell line barely expressed MHC class I but about 50% expressed Rae-1, a ligand for NK activation receptor NKG2D. The Rae-1-positive population of implant B16 melanoma was effectively eliminated in the tumor mass progressed in mice. This antitumor activity was induced in parallel with IFN-gamma and abolished in mice by treatment with asialoGM-1 but not CD8beta Ab, suggesting the effector is NK cell. NK cell activation occurred in the spleen of wild-type mice medicated with Spirulina. This Spirulina-mediated enhanced NK activation was abrogated in MyD88 -/- mice but not in TICAM-1 -/- mice. The NK activating properties of Spirulina depending on MyD88 were confirmed with in vitro bone marrow-derived dendritic cells expressing TLR2/4. In D16D8 tumor challenge studies, the antitumor effect of Spirulina was abolished in MyD88 -/- mice. Hence, orally administered Spirulina enhances tumoricidal NK activation through the MyD88 pathway. Spirulina exerted a synergistic antitumor activity with BCG-cell wall skeleton, which is known to activate the MyD88 pathway via TLR2/4 with no NK enhancing activity. Spirulina and BCG-cell wall skeleton synergistically augmented IFN-gamma production and antitumor potential in the B16D8 versus C57BL/6 system. We infer from these results that NK activation by Spirulina has some advantage in combinational use with BCG-cell wall skeleton for developing adjuvant-based antitumor immunotherapy.


Assuntos
Células Matadoras Naturais/imunologia , Ativação Linfocitária , Melanoma Experimental/imunologia , Spirulina/imunologia , Adjuvantes Imunológicos/metabolismo , Administração Oral , Animais , Vacina BCG/imunologia , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Parede Celular/imunologia , Células Dendríticas/imunologia , Sinergismo Farmacológico , Feminino , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Pós , Organismos Livres de Patógenos Específicos , Baço/citologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
13.
J Biochem ; 145(1): 87-94, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18974158

RESUMO

Stimulation of macrophages by various ligands results in the activation of both phosphoinositide 3-kinase (PI3K) and protein kinase C (PKC). Here, we showed that PKCdelta selectively inhibits class IA PI3K. Prior exposure of macrophages to a PKC activator, phorbol 12-myristate 13-acetate (PMA) inhibited the PI3K activation induced by the Fcgamma receptor (FcgammaR) ligation but not that induced by C5a. Prolonged PKC inhibition by GF109203X increased the basal PI3K activity of quiescent macrophages. The effect of the PKC inhibitor can be observed in macrophages from mice lacking class IB PI3K (p110gamma). Thus PKC was suggested to selectively attenuate the class IA activity. Chronic PKC activation by PMA induced PKCdelta degradation and Akt activation. Enhancement of the basal Akt actvity was also observed in cells stably deficient in PKCdelta prepared by shRNA technique. FcgammaR-mediated phagocytosis was dramatically increased in these cells. Thus it is suggested that inactivation of class IA PI3K by PKCdelta is functioning in regulation of FcgammaR-mediated phagocytosis.


Assuntos
Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C-delta/metabolismo , Receptores de IgG/metabolismo , Animais , Células Cultivadas , Feminino , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Acetato de Tetradecanoilforbol/farmacologia
14.
J Immunol ; 180(4): 2054-61, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18250410

RESUMO

It has been suggested that PI3K participates in TLR signaling. However, identifying specific roles for individual PI3K subtypes in signaling has remained elusive. In macrophages from the p110gamma(-/-) mouse, LPS-induced phosphorylation of Akt occurred normally despite the fact that the action of anaphylatoxin C5a was impaired markedly. In RAW 264.7 cells expressing short hairpin RNA that targets p110beta, LPS-induced phosphorylation of Akt was significantly attenuated. In contrast, the LPS action was not impaired, but was rather augmented in the p110alpha-deficient cells. Previous pharmacologic studies have suggested that a PI3K-Akt pathway negatively regulates TLR-induced inducible NO synthase expression and cytokine production. In the p110beta-deficient cells, inducible NO synthase expression and IL-12 production upon stimulation by LPS were increased, whereas LPS-induced expression of COX-2 and activation of MAPKs were unaffected. Together, the results suggest a specific function of p110beta in the negative feedback regulation of TLR signaling.


Assuntos
Regulação para Baixo , Lipopolissacarídeos/farmacologia , Nitritos/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Classe I de Fosfatidilinositol 3-Quinases , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Isoenzimas/deficiência , Isoenzimas/genética , Isoenzimas/fisiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Nitritos/metabolismo , Fosfatidilinositol 3-Quinases/deficiência , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/imunologia , Receptores Toll-Like/fisiologia
15.
J Biochem ; 143(3): 295-302, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18079163

RESUMO

The activation of interleukin 1 receptor-associated kinase (IRAK)-1 is a key event in the transmission of signals from Toll-like receptors (TLRs). The catalytic activity of the protein kinase is not essential for its ability to activate nuclear factor (NF) kappaB, because transfection of a kinase-dead mutant of IRAK-1 (IRAK-1KD) is able to activate NF-kappaB in HEK293T cells. In the present study, we observed that the effect of IRAK-1KD was impaired by simultaneous expression of IRAK-4. The effect of IRAK-4 was accompanied by the phosphorylation and degradation of IRAK-1KD. Expression of IRAK-4KD instead of IRAK-4 did not cause these events. In IRAK-4-deficient Raw264.7 macrophages that were prepared by introducing short-hairpin RNA probes, the basal level of IRAK-1 was increased markedly. Stimulation of these cells with TLR ligands did not cause the degradation of IRAK-1, which was clearly observed in the parent cells. These results suggested that the expression of IRAK-4 alone is sufficient to cause the degradation of IRAK-1; the autophosphorylation of IRAK-1 is not necessary to terminate the TLR-induced activation of NF-kappaB. IRAK-4 has an ability to induce the degradation of IRAK-1 in addition to its role as an activator of IRAK-1.


Assuntos
Retroalimentação Fisiológica , Quinases Associadas a Receptores de Interleucina-1/metabolismo , NF-kappa B/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Linhagem Celular , Retroalimentação Fisiológica/efeitos dos fármacos , Humanos , Proteínas I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
16.
Cancer Sci ; 98(12): 1936-42, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17888032

RESUMO

Interleukin (IL)-12 and IL-18 are secreted by myeloid cells activated with adjuvants such as Bacillus Calmette-Guérin (BCG) cell wall. They induce T-helper 1 polarization in the host immune system and upregulate production of lymphocyte interferon-gamma, which leads to the induction of an antitumor gene program. It has been reported that humans have an immune system that more closely resembles that of the guinea pig in adjuvant-response features rather than the mouse system, which prevents the mouse results being extrapolated to human immunotherapy. Here we have constructed a tumor-implant system in guinea pigs to evaluate the antitumor potential of guinea pig IL-12 (gpIL-12) and guinea pig IL-18 (gpIL-18). Purified recombinant gpIL-12 and gpIL-18 were prepared and applied intraperitoneally to tumor-bearing (line 10 hepatoma) guinea pigs as the basis of the adjuvant immunotherapy. Intraperitoneal administration of gpIL-12 and gpIL-18 led to retardation of primary tumor growth and suppression of lymph-node metastasis in tumor-bearing guinea pigs. The permissible range of IL-12 appeared wider in guinea pigs than in mice. Even at an IL-12 dose higher than that in mice, there was no evidence of side-effects until day 26, when the guinea pigs were killed. gpIL-18 augmented the antitumor effect of gpIL-12 but exerted less ability to suppress lymph-node metastasis. The effects of gpIL-12 and gpIL-18 on the tumors implanted in guinea pigs will encourage us to use IL-12- and IL-18-inducible adjuvants for immunotherapy in human patients with solid cancer.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Interleucina-12/uso terapêutico , Interleucina-18/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Animais , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Cobaias , Humanos , Imunoterapia/métodos , Interleucina-12/genética , Interleucina-18/genética , Neoplasias Hepáticas/patologia , Receptores Toll-Like/imunologia
17.
Biochim Biophys Acta ; 1770(4): 687-93, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17276010

RESUMO

Menadione (vitamin K(3)) has been shown to activate Erk in several cell lines. This effect has been shown to be due to the activation of EGF receptors (EGFR) as a result of inhibition of some protein tyrosine phosphatases. In the present study, we examined the effects of menadione on Akt in Chinese hamster ovary cells. The phosphorylation of Akt by menadione was not inhibited by AG1478, an inhibitor of EGFR. Menadione inhibited the lipid phosphatase activity of PTEN in a cell-free system. In an intact cell system, menadione inhibited the effect of transfected PTEN on Akt. Thus, one mechanism of its action was considered the accelerated activation of Akt through inhibition of PTEN. This was not the sole mechanism responsible for the EGFR-independent activation of Akt, because menadione attenuated the rate of Akt dephosphorylation even in PTEN-null PC3 cells. The decelerated inactivation of Akt, probably through inhibition of some tyrosine phosphatases, was considered another mechanism of its action.


Assuntos
PTEN Fosfo-Hidrolase/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vitamina K 3/farmacologia , Vitaminas/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Fatores de Tempo , Transfecção , Fosfatases cdc25/antagonistas & inibidores , Fosfatases cdc25/metabolismo
18.
Mol Pharmacol ; 70(3): 1143-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16804092

RESUMO

The 1,4-naphthoquinone derivative, shikonin, has been shown to increase glucose uptake by adipocytes and myocytes with minor effects on protein tyrosine phosphorylation in the cells (Biochem Biophys Res Commun 292:642-651, 2002). The present study was performed to examine the mechanism of this action of shikonin. Shikonin inhibited the phosphatidylinositol 3,4,5-triphosphate (PtdIns-3,4,5-P3) phosphatase activity of recombinant phosphatase and tensin homolog deleted on chromosome 10 (PTEN) with an IC50 value of 2.7 microM. Shikonin induced marked accumulation of PtdIns-3,4,5-P3 and activation of protein kinase B (PKB) in Chinese hamster ovary cells expressing insulin receptors. In addition to its effect on PTEN, shikonin was found to inhibit several protein phosphatases in cell-free systems. Its effect on tyrosine phosphorylation in intact cells was far weaker than that of pervanadate, a widely used tyrosine phosphatase inhibitor, despite the observation that the effect of shikonin on PKB was more potent than that of pervanadate. These results suggested that the inhibition of PTEN provides a clue to its potent insulin-like actions. We also found that naphthoquinones, including 1,2-naphthoquinone, inhibit PTEN in the cell-free system, which suggested that the effect on PTEN (and thus the effect on phosphatidylinositol 3-kinase signaling) should be taken into account when examining the pharmacological actions of naphthoquinone derivatives.


Assuntos
Insulina/metabolismo , Naftoquinonas/farmacologia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Animais , Células Cultivadas , Cricetinae , Cricetulus , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo
19.
Mol Pharmacol ; 69(5): 1717-24, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16474002

RESUMO

A number of previous studies have suggested the involvement of phosphoinositide 3-kinase (PI3K) in Toll-like receptor (TLR) signaling. However, there have also been a number of conflicting reports. The PI3K inhibitor wortmannin greatly enhanced TLR-mediated inducible nitric-oxide synthase (iNOS) expression and cytokine production in the mouse macrophage cell line Raw264.7. The effect of wortmannin was common to TLR2, -3, -4, and -9 and was accompanied by activation of nuclear factor-kappaB and up-regulation of cytokine mRNA production. We were surprised to find that another PI3K inhibitor, LY294002, strongly suppressed the production of iNOS and cytokines. This effect of 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002) was based on its inhibitory effect on mRNA synthesis. Expression of dominant-negative mutants of PI3K in macrophages augmented the lipopolysaccharideinduced expression of iNOS. Introduction of a pH1 vector producing short hairpin RNA that targets a catalytic subunit of PI3K (p110beta) also enhanced the TLR-mediated responses. Thus, the augmentation of TLR signals by wortmannin was mediated through the inhibition of PI3K, whereas the effect of LY294002 was not explained by its effect on PI3K. These discrepancies in the effects of pharmacological inhibitors in TLR-signaling may have caused confusion regarding the role of PI3K in innate immunity.


Assuntos
Androstadienos/farmacologia , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Morfolinas/farmacologia , NF-kappa B/metabolismo , Óxido Nítrico/biossíntese , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Toll-Like/fisiologia , Humanos , Cinética , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Interferente Pequeno/genética , Receptores Toll-Like/efeitos dos fármacos , Wortmanina
20.
Mol Pharmacol ; 69(4): 1288-95, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16373689

RESUMO

Proinflammatory mediators such as cytokines and NO play pivotal roles in various inflammatory diseases. To combat inflammatory diseases successfully, regulation of proinflammatory mediator production would be a critical process. In the present study, we investigated the in vitro effects of ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), a novel small molecule cytokine production inhibitor, and its mechanism of action. In RAW264.7 cells and mouse peritoneal macrophages, TAK-242 suppressed lipopolysaccharide (LPS)-induced production of NO, tumor necrosis factor-alpha (TNF-alpha), and interleukin (IL)-6, with 50% inhibitory concentration (IC50) of 1.1 to 11 nM. TAK-242 also suppressed the production of these cytokines from LPS-stimulated human peripheral blood mononuclear cells (PBMCs) at IC50 values from 11 to 33 nM. In addition, the inhibitory effects on the LPS-induced IL-6 and IL-12 production were similar in human PBMCs, monocytes, and macrophages. TAK-242 inhibited mRNA expression of IL-6 and TNF-alpha induced by LPS and interferon-gamma in RAW264.7 cells. The phosphorylation of mitogen-activated protein kinases induced by LPS was also inhibited in a concentration-dependent manner. However, TAK-242 did not antagonize the binding of LPS to the cells. It is noteworthy that TAK-242 suppressed the cytokine production induced by Toll-like receptor (TLR) 4 ligands, but not by ligands for TLR2, -3, and -9. In addition, IL-1beta-induced IL-8 production from human PBMCs was not markedly affected by TAK-242. These data suggest that TAK-242 suppresses the production of multiple cytokines by selectively inhibiting TLR4 intracellular signaling. Finally, TAK-242 is a novel small molecule TLR4 signaling inhibitor and could be a promising therapeutic agent for inflammatory diseases, whose pathogenesis involves TLR4.


Assuntos
Citocinas/biossíntese , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Western Blotting , Linhagem Celular , Ativação Enzimática , Sistema de Sinalização das MAP Quinases , Camundongos , Óxido Nítrico/biossíntese , Reação em Cadeia da Polimerase , Receptor 4 Toll-Like/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA