Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39253444

RESUMO

Background: E-cigarettes (E.cigs) cause inflammation and damage to human organs, including the lungs and heart. In the gut, E.cig vaping promotes inflammation and gut leakiness. Further, E.cig vaping increases tumorigenesis in oral and lung epithelial cells by inducing mutations and suppressing host DNA repair enzymes. It is well known that cigarette (cig) smoking increases the risk of colorectal cancer (CRC). To date, it is unknown whether E.cig vaping impacts CRC development. Methods: A mouse model of human familial adenomatous polyposis (CPC-APC) was utilized wherein a mutation in the adenomatous polyposis coli (APC) gene, CDX2-Cre-APCMin/+, leads to the development of colon adenomas within 16 weeks. Mice were exposed to air (controls), E.cig vaping, cig, or both (dual exposure). After 4 weeks of 2-hour exposures per day (1 hour of each for dual exposures), the colon was collected and assessed for polyp number and pathology scores by microscopy. Expression of inflammatory cytokines and cancer stem cell markers were quantified. DNA damage such as double-strand DNA breaks was evaluated by immunofluorescence, western blot and gene-specific long amplicon qPCR. DNA repair enzyme levels (NEIL-2, NEIL-1, NTH1, and OGG1) were quantified by western blot. Proliferation markers were assessed by RT-qPCR and ELISA. Results: CPC-APC mice exposed to E.cig, cig, and dual exposure developed a higher number of polyps compared to controls. Inflammatory proteins, DNA damage, and cancer stemness markers were higher in E-cig, cig, and dual-exposed mice as well. DNA damage was found to be associated with the suppression of DNA glycosylases, particularly with NEIL-2 and NTH1. E.cig and dual exposure both stimulated cancer cell stem markers (CD44, Lgr-5, DCLK1, and Ki67). The effect of E.cigs on polyp formation and CRC development was less than that of cigs, while dual exposure was more tumorigenic than either of the inhalants alone. Conclusion: E.cig vaping promotes CRC by stimulating inflammatory pathways, mediating DNA damage, and upregulating transcription of cancer stem cell markers. Critically, combining E.cig vaping with cig smoking leads to higher levels of tumorigenesis. Thus, while the chemical composition of these two inhalants, E.cigs and cigs, is highly disparate, they both drive the development of cancer and when combined, a highly common pattern of use, they can have additive or synergistic effects.

2.
iScience ; 26(2): 105973, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36756378

RESUMO

Upon sensing DNA double-strand breaks (DSBs), eukaryotic cells either die or repair DSBs via one of the two competing pathways, i.e., non-homologous end-joining (NHEJ) or homologous recombination (HR). We show that cell fate after DSBs hinges on GIV/Girdin, a guanine nucleotide-exchange modulator of heterotrimeric Giα•ßγ protein. GIV suppresses HR by binding and sequestering BRCA1, a key coordinator of multiple steps within the HR pathway, away from DSBs; it does so using a C-terminal motif that binds BRCA1's BRCT-modules via both phospho-dependent and -independent mechanisms. Using another non-overlapping C-terminal motif GIV binds and activates Gi and enhances the "free" Gßγ→PI-3-kinase→Akt pathway, which promotes survival and is known to suppress HR, favor NHEJ. Absence of GIV, or loss of either of its C-terminal motifs enhanced cell death upon genotoxic stress. Because GIV selectively binds other BRCT-containing proteins suggests that G-proteins may fine-tune sensing, repair, and survival after diverse types of DNA damage.

3.
Antioxidants (Basel) ; 11(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36009301

RESUMO

Cystathionine-y-lyase (CSE) is a critical enzyme for hydrogen sulfide (H2S) biosynthesis and plays a key role in respiratory syncytial virus (RSV) pathogenesis. The transcription factor NRF2 is the master regulator of cytoprotective and antioxidant gene expression, and is degraded during RSV infection. While some evidence supports the role of NRF2 in CSE gene transcription, its role in CSE expression in airway epithelial cells is not known. Here, we show that RSV infection decreased CSE expression and activity in primary small airway epithelial (SAE) cells, while treatment with tert-butylhydroquinone (tBHQ), an NRF2 inducer, led to an increase of both. Using reporter gene assays, we identified an NRF2 response element required for the NRF2 inducible expression of the CSE promoter. Electrophoretic mobility shift assays demonstrated inducible specific NRF2 binding to the DNA probe corresponding to the putative CSE promoter NRF2 binding sequence. Using chromatin immunoprecipitation assays, we found a 50% reduction in NRF2 binding to the endogenous CSE proximal promoter in SAE cells infected with RSV, and increased binding in cells stimulated with tBHQ. Our results support the hypothesis that NRF2 regulates CSE gene transcription in airway epithelial cells, and that RSV-induced NRF2 degradation likely accounts for the observed reduced CSE expression and activity.

4.
J Biol Chem ; 296: 100723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33932404

RESUMO

Aberrant or constitutive activation of nuclear factor kappa B (NF-κB) contributes to various human inflammatory diseases and malignancies via the upregulation of genes involved in cell proliferation, survival, angiogenesis, inflammation, and metastasis. Thus, inhibition of NF-κB signaling has potential for therapeutic applications in cancer and inflammatory diseases. We reported previously that Nei-like DNA glycosylase 2 (NEIL2), a mammalian DNA glycosylase, is involved in the preferential repair of oxidized DNA bases from the transcriptionally active sequences via the transcription-coupled base excision repair pathway. We have further shown that Neil2-null mice are highly sensitive to tumor necrosis factor α (TNFα)- and lipopolysaccharide-induced inflammation. Both TNFα and lipopolysaccharide are potent activators of NF-κB. However, the underlying mechanism of NEIL2's role in the NF-κB-mediated inflammation remains elusive. Here, we have documented a noncanonical function of NEIL2 and demonstrated that the expression of genes, such as Cxcl1, Cxcl2, Cxcl10, Il6, and Tnfα, involved in inflammation and immune cell migration was significantly higher in both mock- and TNFα-treated Neil2-null mice compared with that in the WT mice. NEIL2 blocks NF-κB's binding to target gene promoters by directly interacting with the Rel homology region of RelA and represses proinflammatory gene expression as determined by co-immunoprecipitation, chromatin immunoprecipitation, and electrophoretic mobility-shift assays. Remarkably, intrapulmonary administration of purified NEIL2 via a noninvasive nasal route significantly abrogated binding of NF-κB to cognate DNA, leading to decreased expression of proinflammatory genes and neutrophil recruitment in Neil2-null as well as WT mouse lungs. Our findings thus highlight the potential of NEIL2 as a biologic for inflammation-associated human diseases.


Assuntos
DNA Glicosilases/metabolismo , Pulmão/metabolismo , NF-kappa B/metabolismo , Animais , Movimento Celular , Regulação da Expressão Gênica , Inflamação/metabolismo , Pulmão/patologia , Camundongos , Transdução de Sinais
5.
Prog Biophys Mol Biol ; 164: 72-80, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33753087

RESUMO

Cell survival largely depends on the faithful maintenance of genetic material since genomic DNA is constantly exposed to genotoxicants from both endogenous and exogenous sources. The evolutionarily conserved base excision repair (BER) pathway is critical for maintaining genome integrity by eliminating highly abundant and potentially mutagenic oxidized DNA base lesions. BER is a multistep process, which is initiated with recognition and excision of the DNA base lesion by a DNA glycosylase, followed by DNA end processing, gap filling and finally sealing of the nick. Besides genome maintenance by global BER, DNA glycosylases have been found to play additional roles, including preferential repair of oxidized lesions from transcribed genes, modulation of the immune response, participation in active DNA demethylation and maintenance of the mitochondrial genome. Central to these functions is the DNA glycosylase NEIL2. Its loss results in increased accumulation of oxidized base lesions in the transcribed genome, triggers an immune response and causes early neurodevelopmental defects, thus emphasizing the multitasking capabilities of this repair protein. Here we review the specialized functions of NEIL2 and discuss the consequences of its absence both in vitro and in vivo.


Assuntos
DNA Glicosilases , Animais , DNA , Dano ao DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos
6.
Cells ; 9(9)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872214

RESUMO

Colorectal cancer (CRC) is the third most prevalent cancer, while the majority (80-85%) of CRCs are sporadic and are microsatellite stable (MSS), and approximately 15-20% of them display microsatellite instability (MSI). Infection and chronic inflammation are known to induce DNA damage in host tissues and can lead to oncogenic transformation of cells, but the role of DNA repair proteins in microbe-associated CRCs remains unknown. Using CRC-associated microbes such as Fusobacterium nucleatum (Fn) in a coculture with murine and human enteroid-derived monolayers (EDMs), here, we show that, among all the key DNA repair proteins, NEIL2, an oxidized base-specific DNA glycosylase, is significantly downregulated after Fn infection. Fn infection of NEIL2-null mouse-derived EDMs showed a significantly higher level of DNA damage, including double-strand breaks and inflammatory cytokines. Several CRC-associated microbes, but not the commensal bacteria, induced the accumulation of DNA damage in EDMs derived from a murine CRC model, and Fn had the most pronounced effect. An analysis of publicly available transcriptomic datasets showed that the downregulation of NEIL2 is often encountered in MSS compared to MSI CRCs. We conclude that the CRC-associated microbe Fn induced the downregulation of NEIL2 and consequent accumulation of DNA damage and played critical roles in the progression of CRCs.


Assuntos
Colo/microbiologia , Dano ao DNA/genética , DNA Glicosilases/genética , Células Epiteliais/metabolismo , Infecções por Fusobacterium/genética , Instabilidade Genômica/genética , Animais , Colo/patologia , Humanos , Inflamação , Camundongos , Camundongos Knockout
7.
J Biol Chem ; 295(32): 11082-11098, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32518160

RESUMO

Infection with the Gram-negative, microaerophilic bacterium Helicobacter pylori induces an inflammatory response and oxidative DNA damage in gastric epithelial cells that can lead to gastric cancer (GC). However, the underlying pathogenic mechanism is largely unclear. Here, we report that the suppression of Nei-like DNA glycosylase 2 (NEIL2), a mammalian DNA glycosylase that specifically removes oxidized bases, is one mechanism through which H. pylori infection may fuel the accumulation of DNA damage leading to GC. Using cultured cell lines, gastric biopsy specimens, primary cells, and human enteroid-derived monolayers from healthy human stomach, we show that H. pylori infection greatly reduces NEIL2 expression. The H. pylori infection-induced downregulation of NEIL2 was specific, as Campylobacter jejuni had no such effect. Using gastric organoids isolated from the murine stomach in coculture experiments with live bacteria mimicking the infected stomach lining, we found that H. pylori infection is associated with the production of various inflammatory cytokines. This response was more pronounced in Neil2 knockout (KO) mouse cells than in WT cells, suggesting that NEIL2 suppresses inflammation under physiological conditions. Notably, the H. pylori-infected Neil2-KO murine stomach exhibited more DNA damage than the WT. Furthermore, H. pylori-infected Neil2-KO mice had greater inflammation and more epithelial cell damage. Computational analysis of gene expression profiles of DNA glycosylases in gastric specimens linked the reduced Neil2 level to GC progression. Our results suggest that NEIL2 downregulation is a plausible mechanism by which H. pylori infection impairs DNA damage repair, amplifies the inflammatory response, and initiates GC.


Assuntos
DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Regulação para Baixo , Mucosa Gástrica/metabolismo , Genoma , Infecções por Helicobacter/metabolismo , Helicobacter pylori/isolamento & purificação , Inflamação/metabolismo , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , DNA Glicosilases/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Progressão da Doença , Mucosa Gástrica/patologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/metabolismo , Humanos , Camundongos , RNA Mensageiro/genética
8.
Proc Natl Acad Sci U S A ; 117(14): 8154-8165, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32205441

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by CAG (encoding glutamine) repeat expansion in the Ataxin-3 (ATXN3) gene. We have shown previously that ATXN3-depleted or pathogenic ATXN3-expressing cells abrogate polynucleotide kinase 3'-phosphatase (PNKP) activity. Here, we report that ATXN3 associates with RNA polymerase II (RNAP II) and the classical nonhomologous end-joining (C-NHEJ) proteins, including PNKP, along with nascent RNAs under physiological conditions. Notably, ATXN3 depletion significantly decreased global transcription, repair of transcribed genes, and error-free double-strand break repair of a 3'-phosphate-containing terminally gapped, linearized reporter plasmid. The missing sequence at the terminal break site was restored in the recircularized plasmid in control cells by using the endogenous homologous transcript as a template, indicating ATXN3's role in PNKP-mediated error-free C-NHEJ. Furthermore, brain extracts from SCA3 patients and mice show significantly lower PNKP activity, elevated p53BP1 level, more abundant strand-breaks in the transcribed genes, and degradation of RNAP II relative to controls. A similar RNAP II degradation is also evident in mutant ATXN3-expressing Drosophila larval brains and eyes. Importantly, SCA3 phenotype in Drosophila was completely amenable to PNKP complementation. Hence, salvaging PNKP's activity can be a promising therapeutic strategy for SCA3.


Assuntos
Ataxina-3/genética , Reparo do DNA por Junção de Extremidades , Enzimas Reparadoras do DNA/metabolismo , Doença de Machado-Joseph/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Polimerase II/metabolismo , Proteínas Repressoras/genética , Idoso de 80 Anos ou mais , Animais , Animais Geneticamente Modificados , Ataxina-3/metabolismo , Encéfalo/patologia , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Modelos Animais de Doenças , Drosophila , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes Induzidas , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Peptídeos/genética , RNA Interferente Pequeno/metabolismo
9.
Free Radic Biol Med ; 152: 152-165, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32145302

RESUMO

A plethora of molecular strategies are employed by breast cancer stem cells (bCSCs) to evade chemotherapy-induced death signals, redox modulation being a crucial factor among those. Here, we observed that bCSCs are resistant to DNA damage and generate low ROS upon doxorubicin (Dox) treatment. Further exploration revealed inherently high NEIL2, a base excision repair (BER) enzyme that plays a key regulatory role in repairing DNA damage, in bCSCs. However, its role in modulating the redox status of bCSCs remains unexplored. In addition, Dox not only upregulates NEIL2 in bCSCs at both transcriptional and translational levels but also declines p300-induced acetylation thus activating NEIL2 and providing a protective effect against the stress inflicted by the genotoxic drug. However, when the redox status of bCSCs is altered by inducing high ROS, apoptosis of the resistant population is accomplished. Subsequently, when NEIL2 is suppressed in bCSCs, chemo-sensitization of the resistant population is enabled by redox reconditioning via impaired DNA repair. This signifies a possibility of therapeutically disrupting the redox balance in bCSCs to enhance their chemo-responsiveness. Our search for an inhibitor of NEIL2 revealed that vitamin B6, i.e., pyridoxine (PN), hinders NEIL2-mediated transcription-coupled repair process by not only decreasing NEIL2 expression but also inhibiting its association with RNA Pol II, thus stimulating DNA damage and triggering ROS. As a consequence of altered redox regulation, bCSCs become susceptible towards Dox, which then induces apoptosis via caspase cascade. These findings signify that PN enhances chemo-responsiveness of bCSCs via redox reconditioning.


Assuntos
Neoplasias da Mama , Piridoxina , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Doxorrubicina/farmacologia , Feminino , Humanos , Células-Tronco Neoplásicas , Oxirredução
10.
Redox Biol ; 18: 43-53, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29940424

RESUMO

8-Oxoguanine DNA glycosylase 1 (OGG1) initiates the base excision repair pathway by removing one of the most abundant DNA lesions, 8-oxo-7,8-dihydroguanine (8-oxoG). Recent data showed that 8-oxoG not only is a pro-mutagenic genomic base lesion, but also functions as an epigenetic mark and that consequently OGG1 acquire distinct roles in modulation of gene expression. In support, lack of functional OGG1 in Ogg1-/- mice led to an altered expression of genes including those responsible for the aberrant innate and adaptive immune responses and susceptibility to metabolic disorders. Therefore, the present study examined stimulus-driven OGG1-DNA interactions at whole genome level using chromatin immunoprecipitation (ChIP)-coupled sequencing, and the roles of OGG1 enriched on the genome were validated by molecular and system-level approaches. Results showed that signaling levels of cellular ROS generated by TNFα, induced enrichment of OGG1 at specific sites of chromatinized DNA, primarily in the regulatory regions of genes. OGG1-ChIP-ed genes are associated with important cellular and biological processes and OGG1 enrichment was limited to a time scale required for immediate cellular responses. Prevention of OGG1-DNA interactions by siRNA depletion led to modulation of NF-κB's DNA occupancy and differential expression of genes. Taken together these data show TNFα-ROS-driven enrichment of OGG1 at gene regulatory regions in the chromatinized DNA, which is a prerequisite to modulation of gene expression for prompt cellular responses to oxidant stress.


Assuntos
Dano ao DNA , DNA Glicosilases/metabolismo , Redes Reguladoras de Genes , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Cromatina/genética , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Células HEK293 , Humanos , Fator de Necrose Tumoral alfa/metabolismo
11.
Front Microbiol ; 9: 663, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29696001

RESUMO

Pathogenic and commensal microbes induce various levels of inflammation and metabolic disease in the host. Inflammation caused by infection leads to increased production of reactive oxygen species (ROS) and subsequent oxidative DNA damage. These in turn cause further inflammation and exacerbation of DNA damage, and pose a risk for cancer development. Helicobacter pylori-mediated inflammation has been implicated in gastric cancer in many previously established studies, and Fusobacterium nucleatum presence has been observed with greater intensity in colorectal cancer patients. Despite ambiguity in the exact mechanism, infection-mediated inflammation may have a link to cancer development through an accumulation of potentially mutagenic DNA damage in surrounding cells. The multiple DNA repair pathways such as base excision, nucleotide excision, and mismatch repair that are employed by cells are vital in the abatement of accumulated mutations that can lead to carcinogenesis. For this reason, understanding the role of DNA repair as an important cellular mechanism in combatting the development of cancer will be essential to characterizing the effect of infection on DNA repair proteins and to identifying early cancer biomarkers that may be targeted for cancer therapies and treatments.

12.
Free Radic Biol Med ; 103: 35-47, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27940348

RESUMO

We find that PEG functionalized ZnO nanoparticles (NP) have anticancer properties primarily because of ROS generation. Detailed investigation revealed two consequences depending on the level of ROS - either DNA damage repair or apoptosis - in a time-dependent manner. At early hours of treatment, NP promote NEIL2-mediated DNA repair process to counteract low ROS-induced DNA damage. However, at late hours these NP produce high level of ROS that inhibits DNA repair process, thereby directing the cell towards apoptosis. Mechanistically at low ROS conditions, transcription factor Sp1 binds to the NEIL2 promoter and facilitates its transcription for triggering a 'fight-back mechanism' thereby resisting cancer cell apoptosis. In contrast, as ROS increase during later hours, Sp1 undergoes oxidative degradation that decreases its availability for binding to the promoter thereby down-regulating NEIL2 and impairing the repair mechanism. Under such conditions, the cells strategically switch to the p53-dependent apoptosis.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Óxido de Zinco/farmacologia , Antineoplásicos/síntese química , Neoplasias da Mama , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Polietilenoglicóis/síntese química , Espécies Reativas de Oxigênio/metabolismo , Óxido de Zinco/síntese química
13.
J Biol Chem ; 291(49): 25553-25566, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27756845

RESUMO

A large percentage of redox-responsive gene promoters contain evolutionarily conserved guanine-rich clusters; guanines are the bases most susceptible to oxidative modification(s). Consequently, 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the most abundant base lesions in promoters and is primarily repaired via the 8-oxoguanine DNA glycosylase-1 (OOG1)-initiated base excision repair pathway. In view of a prompt cellular response to oxidative challenge, we hypothesized that the 8-oxoG lesion and the cognate repair protein OGG1 are utilized in transcriptional gene activation. Here, we document TNFα-induced enrichment of both 8-oxoG and OGG1 in promoters of pro-inflammatory genes, which precedes interaction of NF-κB with its DNA-binding motif. OGG1 bound to 8-oxoG upstream from the NF-κB motif increased its DNA occupancy by promoting an on-rate of both homodimeric and heterodimeric forms of NF-κB. OGG1 depletion decreased both NF-κB binding and gene expression, whereas Nei-like glycosylase-1 and -2 had a marginal effect. These results are the first to document a novel paradigm wherein the DNA repair protein OGG1 bound to its substrate is coupled to DNA occupancy of NF-κB and functions in epigenetic regulation of gene expression.


Assuntos
DNA Glicosilases/biossíntese , Epigênese Genética , Regulação Enzimológica da Expressão Gênica , Guanina/análogos & derivados , NF-kappa B/metabolismo , Elementos de Resposta , Animais , DNA Glicosilases/genética , Reparo do DNA , Guanina/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , NF-kappa B/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
14.
J Biol Chem ; 290(34): 20919-20933, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26134572

RESUMO

The human DNA glycosylase NEIL1 was recently demonstrated to initiate prereplicative base excision repair (BER) of oxidized bases in the replicating genome, thus preventing mutagenic replication. A significant fraction of NEIL1 in cells is present in large cellular complexes containing DNA replication and other repair proteins, as shown by gel filtration. However, how the interaction of NEIL1 affects its recruitment to the replication site for prereplicative repair was not investigated. Here, we show that NEIL1 binarily interacts with the proliferating cell nuclear antigen clamp loader replication factor C, DNA polymerase δ, and DNA ligase I in the absence of DNA via its non-conserved C-terminal domain (CTD); replication factor C interaction results in ∼8-fold stimulation of NEIL1 activity. Disruption of NEIL1 interactions within the BERosome complex, as observed for a NEIL1 deletion mutant (N311) lacking the CTD, not only inhibits complete BER in vitro but also prevents its chromatin association and reduced recruitment at replication foci in S phase cells. This suggests that the interaction of NEIL1 with replication and other BER proteins is required for efficient repair of the replicating genome. Consistently, the CTD polypeptide acts as a dominant negative inhibitor during in vitro repair, and its ectopic expression sensitizes human cells to reactive oxygen species. We conclude that multiple interactions among BER proteins lead to large complexes, which are critical for efficient BER in mammalian cells, and the CTD interaction could be targeted for enhancing drug/radiation sensitivity of tumor cells.


Assuntos
DNA Glicosilases/genética , Reparo do DNA , Replicação do DNA , Genoma Humano , Sequência de Bases , Dano ao DNA , DNA Glicosilases/deficiência , DNA Ligase Dependente de ATP , DNA Ligases/genética , DNA Ligases/metabolismo , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Dados de Sequência Molecular , Estresse Oxidativo , Estrutura Terciária de Proteína , Radiação Ionizante , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicação C , Fase S/genética , Fase S/efeitos da radiação , Transdução de Sinais
15.
J Immunol ; 193(9): 4643-53, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25267977

RESUMO

8-Oxoguanine-DNA glycosylase-1 (OGG1) is the primary enzyme for repairing 7,8-dihydro-8-oxoguanine (8-oxoG) via the DNA base excision repair pathway (OGG1-BER). Accumulation of 8-oxoG in the genomic DNA leads to genetic instability and carcinogenesis and is thought to contribute to the worsening of various inflammatory and disease processes. However, the disease mechanism is unknown. In this study, we proposed that the mechanistic link between OGG1-BER and proinflammatory gene expression is OGG1's guanine nucleotide exchange factor activity, acquired after interaction with the 8-oxoG base and consequent activation of the small GTPase RAS. To test this hypothesis, we used BALB/c mice expressing or deficient in OGG1 in their airway epithelium and various molecular biological approaches, including active RAS pulldown, reporter and Comet assays, small interfering RNA-mediated depletion of gene expression, quantitative RT-PCR, and immunoblotting. We report that the OGG1-initiated repair of oxidatively damaged DNA is a prerequisite for GDP → GTP exchange, KRAS-GTP-driven signaling via MAP kinases and PI3 kinases and mitogen-stress-related kinase-1 for NF-κB activation, proinflammatory chemokine/cytokine expression, and inflammatory cell recruitment to the airways. Mice deficient in OGG1-BER showed significantly decreased immune responses, whereas a lack of other Nei-like DNA glycosylases (i.e., NEIL1 and NEIL2) had no significant effect. These data unveil a previously unidentified role of OGG1-driven DNA BER in the generation of endogenous signals for inflammation in the innate signaling pathway.


Assuntos
DNA Glicosilases/metabolismo , Imunidade Inata , Inflamação/imunologia , Inflamação/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Dano ao DNA , DNA Glicosilases/deficiência , DNA Glicosilases/genética , Reparo do DNA , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Ativação Transcricional
16.
Sci Rep ; 4: 6015, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25109311

RESUMO

Peptide rational design was used here to guide the creation of two novel short ß-lactamase inhibitors, here named dBLIP-1 and -2, with length of five amino acid residues. Molecular modeling associated with peptide synthesis improved bactericidal efficacy in addition to amoxicillin, ampicillin and cefotaxime. Docked structures were consistent with calorimetric analyses against bacterial ß-lactamases. These two compounds were further tested in mice. Whereas commercial antibiotics alone failed to cure mice infected with Staphylococcus aureus and Escherichia coli expressing ß-lactamases, infection was cleared when treated with antibiotics in combination with dBLIPs, clearly suggesting that peptides were able to neutralize bacterial resistance. Moreover, immunological assays were also performed showing that dBLIPs were unable to modify mammalian immune response in both models, reducing the risks of collateral effects. In summary, the unusual peptides here described provide leads to overcome ß-lactamase-based resistance, a remarkable clinical challenge.


Assuntos
Desenho de Fármacos , Peptídeos/química , Inibidores de beta-Lactamases/química , beta-Lactamases/química , Animais , Antibacterianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/enzimologia , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Cinética , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Peptídeos/toxicidade , Estrutura Terciária de Proteína , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Inibidores de beta-Lactamases/metabolismo , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo
17.
Cell Rep ; 8(1): 177-89, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24953651

RESUMO

Cell-cycle phase is a critical determinant of the choice between DNA damage repair by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Here, we report that double-strand breaks (DSBs) induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF colocalizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S and G2 phase but not G1 phase cells. Expression of MOF-T392A also blocks the reduction in DSB-associated 53BP1 seen in wild-type S/G2 phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair, and decreased cell survival following irradiation. These data support a model whereby ATM-mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2 phase.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Histona Acetiltransferases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Reparo de DNA por Recombinação , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Pontos de Checagem da Fase G1 do Ciclo Celular , Pontos de Checagem da Fase G2 do Ciclo Celular , Células HEK293 , Histona Acetiltransferases/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Mutação , Fosforilação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
18.
PLoS One ; 9(3): e90261, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24595271

RESUMO

Secondhand smoke (SHS) is a confirmed lung carcinogen that introduces thousands of toxic chemicals into the lungs. SHS contains chemicals that have been implicated in causing oxidative DNA damage in the airway epithelium. Although DNA repair is considered a key defensive mechanism against various environmental attacks, such as cigarette smoking, the associations of individual repair enzymes with susceptibility to lung cancer are largely unknown. This study investigated the role of NEIL2, a DNA glycosylase excising oxidative base lesions, in human lung cells treated with sidestream smoke (SSS), the main component of SHS. To do so, we generated NEIL2 knockdown cells using siRNA-technology and exposed them to SSS-laden medium. Representative SSS chemical compounds in the medium were analyzed by mass spectrometry. An increased production of reactive oxygen species (ROS) in SSS-exposed cells was detected through the fluorescent detection and the induction of HIF-1α. The long amplicon-quantitative PCR (LA-QPCR) assay detected significant dose-dependent increases of oxidative DNA damage in the HPRT gene of cultured human pulmonary fibroblasts (hPF) and BEAS-2B epithelial cells exposed to SSS for 24 h. These data suggest that SSS exposure increased oxidative stress, which could contribute to SSS-mediated toxicity. siRNA knockdown of NEIL2 in hPF and HEK 293 cells exposed to SSS for 24 h resulted in significantly more oxidative DNA damage in HPRT and POLB than in cells with control siRNA. Taken together, our data strongly suggest that decreased repair of oxidative DNA base lesions due to an impaired NEIL2 expression in non-smokers exposed to SSS would lead to accumulation of mutations in genomic DNA of lung cells over time, thus contributing to the onset of SSS-induced lung cancer.


Assuntos
Dano ao DNA , DNA Glicosilases/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/fisiologia , Estresse Oxidativo , Fumaça/efeitos adversos , Sequência de Bases , Linhagem Celular , Meios de Cultura , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Hipoxantina Fosforribosiltransferase/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo
19.
DNA Repair (Amst) ; 12(10): 856-63, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23890570

RESUMO

Accumulation of 8-oxo-7,8-dihydroguanine (8-oxoG) in the DNA results in genetic instability and mutagenesis, and is believed to contribute to carcinogenesis, aging processes and various aging-related diseases. 8-OxoG is removed from the DNA via DNA base excision repair (BER), initiated by 8-oxoguanine DNA glycosylase-1 (OGG1). Our recent studies have shown that OGG1 binds its repair product 8-oxoG base with high affinity at a site independent from its DNA lesion-recognizing catalytic site and the OGG1•8-oxoG complex physically interacts with canonical Ras family members. Furthermore, exogenously added 8-oxoG base enters the cells and activates Ras GTPases; however, a link has not yet been established between cell signaling and DNA BER, which is the endogenous source of the 8-oxoG base. In this study, we utilized KG-1 cells expressing a temperature-sensitive mutant OGG1, siRNA ablation of gene expression, and a variety of molecular biological assays to define a link between OGG1-BER and cellular signaling. The results show that due to activation of OGG1-BER, 8-oxoG base is released from the genome in sufficient quantities for activation of Ras GTPase and resulting in phosphorylation of the downstream Ras targets Raf1, MEK1,2 and ERK1,2. These results demonstrate a previously unrecognized mechanism for cellular responses to OGG1-initiated DNA BER.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA , Regulação da Expressão Gênica , Transdução de Sinais , Linhagem Celular , DNA Glicosilases/genética , Guanina/análogos & derivados , Guanina/metabolismo , Células HeLa , Humanos , Estresse Oxidativo , Fosforilação , Células U937 , Proteínas ras/metabolismo
20.
Mutagenesis ; 28(4): 381-91, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23462851

RESUMO

Exposure to thirdhand smoke (THS) is a newly described health risk. Evidence supports its widespread presence in indoor environments. However, its genotoxic potential, a critical aspect in risk assessment, is virtually untested. An important characteristic of THS is its ability to undergo chemical transformations during aging periods, as demonstrated in a recent study showing that sorbed nicotine reacts with the indoor pollutant nitrous acid (HONO) to form tobacco-specific nitrosamines (TSNAs) such as 4-(methylnitrosamino)-4-(3-pyridyl)butanal (NNA) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The goal of this study was to assess the genotoxicity of THS in human cell lines using two in vitro assays. THS was generated in laboratory systems that simulated short (acute)- and long (chronic)-term exposures. Analysis by liquid chromatography-tandem mass spectrometry quantified TSNAs and common tobacco alkaloids in extracts of THS that had sorbed onto cellulose substrates. Exposure of human HepG2 cells to either acute or chronic THS for 24h resulted in significant increases in DNA strand breaks in the alkaline Comet assay. Cell cultures exposed to NNA alone showed significantly higher levels of DNA damage in the same assay. NNA is absent in freshly emitted secondhand smoke, but it is the main TSNA formed in THS when nicotine reacts with HONO long after smoking takes place. The long amplicon-quantitative PCR assay quantified significantly higher levels of oxidative DNA damage in hypoxanthine phosphoribosyltransferase 1 (HPRT) and polymerase ß (POLB) genes of cultured human cells exposed to chronic THS for 24h compared with untreated cells, suggesting that THS exposure is related to increased oxidative stress and could be an important contributing factor in THS-mediated toxicity. The findings of this study demonstrate for the first time that exposure to THS is genotoxic in human cell lines.


Assuntos
Dano ao DNA , Poluição por Fumaça de Tabaco/efeitos adversos , Linhagem Celular , Ensaio Cometa , Quebras de DNA/efeitos dos fármacos , Humanos , Mutagênicos/análise , Mutagênicos/química , Mutagênicos/toxicidade , Ácido Nitroso/análise , Ácido Nitroso/química , Ácido Nitroso/toxicidade , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA