Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167849

RESUMO

Transesophageal echocardiography (TEE) imaging is a vital tool used in the evaluation of complex cardiac pathology and the management of cardiac surgery patients. A key limitation to the application of deep learning strategies to intraoperative and intraprocedural TEE data is the complexity and unstructured nature of these images. In the present study, we developed a deep learning-based, multi-category TEE view classification model that can be used to add structure to intraoperative and intraprocedural TEE imaging data. More specifically, we trained a convolutional neural network (CNN) to predict standardized TEE views using labeled intraoperative and intraprocedural TEE videos from Cedars-Sinai Medical Center (CSMC). We externally validated our model on intraoperative TEE videos from Stanford University Medical Center (SUMC). Accuracy of our model was high across all labeled views. The highest performance was achieved for the Trans-Gastric Left Ventricular Short Axis View (area under the receiver operating curve [AUC] = 0.971 at CSMC, 0.957 at SUMC), the Mid-Esophageal Long Axis View (AUC = 0.954 at CSMC, 0.905 at SUMC), the Mid-Esophageal Aortic Valve Short Axis View (AUC = 0.946 at CSMC, 0.898 at SUMC), and the Mid-Esophageal 4-Chamber View (AUC = 0.939 at CSMC, 0.902 at SUMC). Ultimately, we demonstrate that our deep learning model can accurately classify standardized TEE views, which will facilitate further downstream deep learning analyses for intraoperative and intraprocedural TEE imaging.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Aprendizado Profundo , Humanos , Ecocardiografia Transesofagiana/métodos , Ecocardiografia/métodos , Valva Aórtica
2.
Lancet Digit Health ; 6(1): e70-e78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065778

RESUMO

BACKGROUND: Preoperative risk assessments used in clinical practice are insufficient in their ability to identify risk for postoperative mortality. Deep-learning analysis of electrocardiography can identify hidden risk markers that can help to prognosticate postoperative mortality. We aimed to develop a prognostic model that accurately predicts postoperative mortality in patients undergoing medical procedures and who had received preoperative electrocardiographic diagnostic testing. METHODS: In a derivation cohort of preoperative patients with available electrocardiograms (ECGs) from Cedars-Sinai Medical Center (Los Angeles, CA, USA) between Jan 1, 2015 and Dec 31, 2019, a deep-learning algorithm was developed to leverage waveform signals to discriminate postoperative mortality. We randomly split patients (8:1:1) into subsets for training, internal validation, and final algorithm test analyses. Model performance was assessed using area under the receiver operating characteristic curve (AUC) values in the hold-out test dataset and in two external hospital cohorts and compared with the established Revised Cardiac Risk Index (RCRI) score. The primary outcome was post-procedural mortality across three health-care systems. FINDINGS: 45 969 patients had a complete ECG waveform image available for at least one 12-lead ECG performed within the 30 days before the procedure date (59 975 inpatient procedures and 112 794 ECGs): 36 839 patients in the training dataset, 4549 in the internal validation dataset, and 4581 in the internal test dataset. In the held-out internal test cohort, the algorithm discriminates mortality with an AUC value of 0·83 (95% CI 0·79-0·87), surpassing the discrimination of the RCRI score with an AUC of 0·67 (0·61-0·72). The algorithm similarly discriminated risk for mortality in two independent US health-care systems, with AUCs of 0·79 (0·75-0·83) and 0·75 (0·74-0·76), respectively. Patients determined to be high risk by the deep-learning model had an unadjusted odds ratio (OR) of 8·83 (5·57-13·20) for postoperative mortality compared with an unadjusted OR of 2·08 (0·77-3·50) for postoperative mortality for RCRI scores of more than 2. The deep-learning algorithm performed similarly for patients undergoing cardiac surgery (AUC 0·85 [0·77-0·92]), non-cardiac surgery (AUC 0·83 [0·79-0·88]), and catheterisation or endoscopy suite procedures (AUC 0·76 [0·72-0·81]). INTERPRETATION: A deep-learning algorithm interpreting preoperative ECGs can improve discrimination of postoperative mortality. The deep-learning algorithm worked equally well for risk stratification of cardiac surgeries, non-cardiac surgeries, and catheterisation laboratory procedures, and was validated in three independent health-care systems. This algorithm can provide additional information to clinicians making the decision to perform medical procedures and stratify the risk of future complications. FUNDING: National Heart, Lung, and Blood Institute.


Assuntos
Aprendizado Profundo , Humanos , Medição de Risco/métodos , Algoritmos , Prognóstico , Eletrocardiografia
3.
JAMA Cardiol ; 7(4): 386-395, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35195663

RESUMO

IMPORTANCE: Early detection and characterization of increased left ventricular (LV) wall thickness can markedly impact patient care but is limited by under-recognition of hypertrophy, measurement error and variability, and difficulty differentiating causes of increased wall thickness, such as hypertrophy, cardiomyopathy, and cardiac amyloidosis. OBJECTIVE: To assess the accuracy of a deep learning workflow in quantifying ventricular hypertrophy and predicting the cause of increased LV wall thickness. DESIGN, SETTINGS, AND PARTICIPANTS: This cohort study included physician-curated cohorts from the Stanford Amyloid Center and Cedars-Sinai Medical Center (CSMC) Advanced Heart Disease Clinic for cardiac amyloidosis and the Stanford Center for Inherited Cardiovascular Disease and the CSMC Hypertrophic Cardiomyopathy Clinic for hypertrophic cardiomyopathy from January 1, 2008, to December 31, 2020. The deep learning algorithm was trained and tested on retrospectively obtained independent echocardiogram videos from Stanford Healthcare, CSMC, and the Unity Imaging Collaborative. MAIN OUTCOMES AND MEASURES: The main outcome was the accuracy of the deep learning algorithm in measuring left ventricular dimensions and identifying patients with increased LV wall thickness diagnosed with hypertrophic cardiomyopathy and cardiac amyloidosis. RESULTS: The study included 23 745 patients: 12 001 from Stanford Health Care (6509 [54.2%] female; mean [SD] age, 61.6 [17.4] years) and 1309 from CSMC (808 [61.7%] female; mean [SD] age, 62.8 [17.2] years) with parasternal long-axis videos and 8084 from Stanford Health Care (4201 [54.0%] female; mean [SD] age, 69.1 [16.8] years) and 2351 from CSMS (6509 [54.2%] female; mean [SD] age, 69.6 [14.7] years) with apical 4-chamber videos. The deep learning algorithm accurately measured intraventricular wall thickness (mean absolute error [MAE], 1.2 mm; 95% CI, 1.1-1.3 mm), LV diameter (MAE, 2.4 mm; 95% CI, 2.2-2.6 mm), and posterior wall thickness (MAE, 1.4 mm; 95% CI, 1.2-1.5 mm) and classified cardiac amyloidosis (area under the curve [AUC], 0.83) and hypertrophic cardiomyopathy (AUC, 0.98) separately from other causes of LV hypertrophy. In external data sets from independent domestic and international health care systems, the deep learning algorithm accurately quantified ventricular parameters (domestic: R2, 0.96; international: R2, 0.90). For the domestic data set, the MAE was 1.7 mm (95% CI, 1.6-1.8 mm) for intraventricular septum thickness, 3.8 mm (95% CI, 3.5-4.0 mm) for LV internal dimension, and 1.8 mm (95% CI, 1.7-2.0 mm) for LV posterior wall thickness. For the international data set, the MAE was 1.7 mm (95% CI, 1.5-2.0 mm) for intraventricular septum thickness, 2.9 mm (95% CI, 2.4-3.3 mm) for LV internal dimension, and 2.3 mm (95% CI, 1.9-2.7 mm) for LV posterior wall thickness. The deep learning algorithm accurately detected cardiac amyloidosis (AUC, 0.79) and hypertrophic cardiomyopathy (AUC, 0.89) in the domestic external validation site. CONCLUSIONS AND RELEVANCE: In this cohort study, the deep learning model accurately identified subtle changes in LV wall geometric measurements and the causes of hypertrophy. Unlike with human experts, the deep learning workflow is fully automated, allowing for reproducible, precise measurements, and may provide a foundation for precision diagnosis of cardiac hypertrophy.


Assuntos
Amiloidose , Cardiomiopatia Hipertrófica , Aprendizado Profundo , Idoso , Amiloidose/diagnóstico , Amiloidose/diagnóstico por imagem , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Estudos de Coortes , Feminino , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
4.
Biochim Biophys Acta Rev Cancer ; 1875(2): 188515, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33513392

RESUMO

The large volume of data used in cancer diagnosis presents a unique opportunity for deep learning algorithms, which improve in predictive performance with increasing data. When applying deep learning to cancer diagnosis, the goal is often to learn how to classify an input sample (such as images or biomarkers) into predefined categories (such as benign or cancerous). In this article, we examine examples of how deep learning algorithms have been implemented to make predictions related to cancer diagnosis using clinical, radiological, and pathological image data. We present a systematic approach for evaluating the development and application of clinical deep learning algorithms. Based on these examples and the current state of deep learning in medicine, we discuss the future possibilities in this space and outline a roadmap for implementations of deep learning in cancer diagnosis.


Assuntos
Biologia Computacional/métodos , Neoplasias/diagnóstico , Algoritmos , Big Data , Aprendizado Profundo , Detecção Precoce de Câncer , Humanos , Aprendizado de Máquina , Neoplasias/patologia
5.
Nat Biomed Eng ; 4(8): 827-834, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572199

RESUMO

Spatial transcriptomics allows for the measurement of RNA abundance at a high spatial resolution, making it possible to systematically link the morphology of cellular neighbourhoods and spatially localized gene expression. Here, we report the development of a deep learning algorithm for the prediction of local gene expression from haematoxylin-and-eosin-stained histopathology images using a new dataset of 30,612 spatially resolved gene expression data matched to histopathology images from 23 patients with breast cancer. We identified over 100 genes, including known breast cancer biomarkers of intratumoral heterogeneity and the co-localization of tumour growth and immune activation, the expression of which can be predicted from the histopathology images at a resolution of 100 µm. We also show that the algorithm generalizes well to The Cancer Genome Atlas and to other breast cancer gene expression datasets without the need for re-training. Predicting the spatially resolved transcriptome of a tissue directly from tissue images may enable image-based screening for molecular biomarkers with spatial variation.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Aprendizado Profundo , Algoritmos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Processamento de Imagem Assistida por Computador , Reprodutibilidade dos Testes , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA