Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Syst Biol Reprod Med ; 68(5-6): 331-347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722894

RESUMO

Under normal conditions, to achieve optimal spermatogenesis, the temperature of the testes should be 2-6 °C lower than body temperature. Cryptorchidism is one of the common pathogenic factors of male infertility. The increase of testicular temperature in male cryptorchidism patients leads to the disorder of body regulation and balance, induces the oxidative stress response of germ cells, destroys the integrity of sperm DNA, yields morphologically abnormal sperm, and leads to excessive apoptosis of germ cells. These physiological changes in the body can reduce sperm fertility and lead to male infertility. This paper describes the factors causing testicular heat stress, including lifestyle and behavioral factors, occupational and environmental factors (external factors), and clinical factors caused by pathological conditions (internal factors). Studies have shown that wearing tight pants or an inappropriate posture when sitting for a long time in daily life, and an increase in ambient temperature caused by different seasons or in different areas, can cause an increase in testicular temperature, induces testicular oxidative stress response, and reduce male fertility. The occurrence of cryptorchidism causes pathological changes within the testis and sperm, such as increased germ cell apoptosis, DNA damage in sperm cells, changes in gene expression, increase in chromosome aneuploidy, and changes in Na+/K+-ATPase activity, etc. At the end of the article, we list some substances that can relieve oxidative stress in tissues, such as trigonelline, melatonin, R. apetalus, and angelica powder. These substances can protect testicular tissue and relieve the damage caused by excessive oxidative stress.


Assuntos
Criptorquidismo , Resposta ao Choque Térmico , Infertilidade Masculina , Espermatogênese , Humanos , Masculino , Adenosina Trifosfatases/metabolismo , Apoptose , Criptorquidismo/metabolismo , Infertilidade Masculina/etiologia , Infertilidade Masculina/prevenção & controle , Infertilidade Masculina/metabolismo , Melatonina , Estresse Oxidativo , Sêmen/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo
2.
Front Genet ; 12: 777510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956326

RESUMO

The World Health Organization predicts that infertility will be the third major health threat after cancer and cardiovascular disease, and will become a hot topic in medical research. Studies have shown that epigenetic changes are an important component of gametogenesis and related reproductive diseases. Epigenetic regulation of noncoding RNA (ncRNA) is appropriate and is a research hotspot in the biomedical field; these include long noncoding RNA (lncRNA), microRNA (miRNA), and PIWI-interacting RNA (piRNA). As vital members of the intracellular gene regulatory network, they affect various life activities of cells. LncRNA functions as a molecular bait, molecular signal and molecular scaffold in the body through molecular guidance. miRNAs are critical regulators of gene expression; they mainly control the stability or translation of their target mRNA after transcription. piRNA functions mainly through silencing genomic transposable elements and the post-transcriptional regulation of mRNAs in animal germ cells. Current studies have shown that these ncRNAs also play significant roles in the reproductive system and are involved in the regulation of essential cellular events in spermatogenesis and follicular development. The abnormal expression of ncRNA is closely linked to testicular germ cell tumors, poly cystic ovary syndrome and other diseases. This paper briefly presents the research on the reproductive process and reproductive diseases involving ncRNAs.

3.
J Ovarian Res ; 14(1): 27, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33550985

RESUMO

BACKGROUND: Ovarian cancer (OC) is one of the most common gynecological malignant tumors worldwide, with high mortality and a poor prognosis. As the early symptoms of malignant ovarian tumors are not obvious, the cause of the disease is still unclear, and the patients' postoperative quality of life of decreases. Therefore, early diagnosis is a problem requiring an urgent solution. METHODS: We obtained the gene expression profiles of ovarian cancer and normal samples from TCGA and GTEx databases for differential expression analysis. From existing literature reports, we acquired the RNA-binding protein (RBP) list for the human species. Utilizing the online tool Starbase, we analyzed the interaction relationship between RBPs and their target genes and selected the modules of RBP target genes through Cytoscape. Finally, univariate and multivariate Cox regression analyses were used to determine the prognostic RBP signature. RESULTS: We obtained 527 differentially expressed RBPs, which were involved in many important cellular events, such as RNA splicing, the cell cycle, and so on. We predicted several target genes of RBPs, constructed the interaction network of RBPs and their target genes, and obtained many modules from the Cytoscape analysis. Functional enrichment of RBP target genes also includes these important biological processes. Through Cox regression analysis, OC prognostic RBPs were identified and a 10-RBP model constructed. Further analysis showed that the model has high accuracy and sensitivity in predicting the 3/5-year survival rate. CONCLUSIONS: Our study identified differentially expressed RBPs and their target genes in OC, and the results promote our understanding of the molecular mechanism of ovarian cancer. The current study could develop novel biomarkers for the diagnosis, treatment, and prognosis of OC and provide new ideas and prospects for future clinical research.


Assuntos
Neoplasias Ovarianas/genética , Proteínas de Ligação a RNA/genética , Transcriptoma , Bases de Dados Genéticas , Feminino , Humanos , Análise Multivariada , Neoplasias Ovarianas/mortalidade , Análise de Componente Principal , Prognóstico , Modelos de Riscos Proporcionais , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes , Taxa de Sobrevida
4.
Differentiation ; 114: 49-57, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32585553

RESUMO

Long noncoding RNAs (lncRNAs) have been shown to execute key roles in spermatogenesis. However, little is known about how lncRNAs gene expression is itself regulated in the germ cells of testis. We previously demonstrated that high expression of lncRNA-Gm2044 exists in spermatocytes and can regulate male germ cell proliferation. Here, the transcriptional regulation of lnRNA-Gm2044 expression in spermatocytes and the downstream signaling were further explored. A bioinformatics assessment predicted two potential binding-sites for the spermatocyte-specific transcription factor A-MYB in the promoter region of lncRNA-Gm2044. Our results proved that the transcription factor A-MYB promotes the expression of lncRNA-Gm2044 in mouse spermatocyte-derived GC-2spd(ts) cells. ChIP and luciferase assays verified that A-MYB mainly binds to the distal promoter region (-819 bp relative to the transcription start site) of lncRNA-Gm2044 and regulates lncRNA-Gm2044 expression through the -819 bp binding-site. In addition, we confirmed that lncRNA-Gm2044 functions as a miR-335-3p sponge to enhance the levels of miR-335-3p's direct target protein, Sycp1. Furthermore, A-MYB can up-regulate Sycp1 expression and down-regulate GC-2spd(ts) cell proliferation by activating its target, lncRNA-Gm2044. Overexpression of lncRNA-Gm2044 or knockdown of miR-335-3p can, at least partially, rescue the effects of A-MYB on Sycp1 expression and GC-2spd(ts) cell proliferation.Taken together, our results provide new information on the mechanistic roles of lncRNA-miRNA in transcription factor A-MYB regulation of spermatocyte function.


Assuntos
Proteínas de Ligação a DNA/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myb/genética , RNA Longo não Codificante/genética , Espermatócitos/citologia , Transativadores/genética , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Camundongos , Espermatócitos/crescimento & desenvolvimento , Transcrição Gênica/genética , Ativação Transcricional/genética
5.
Mol Reprod Dev ; 86(8): 1023-1032, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31179605

RESUMO

Long noncoding RNAs (lncRNAs) have been demonstrated to play vital roles in mammalian reproduction. Our previous research revealed that lncRNA Gm2044 is highly expressed in mouse spermatocytes and regulates male germ cell function. The gene annotation database BioGPS shows that Gm2044 is not only highly expressed in testicular tissue but also in ovarian tissue, which suggests that Gm2044 may be involved in female reproductive development. In this study, we confirmed that lncRNA Gm2044 promotes 17ß-estradiol synthesis in mouse pre-antral follicular granulosa cells (mpGCs). Furthermore, bioinformatics methods, western blot, and the luciferase assay proved that Gm2044 functions as a miR-138-5p sponge to inhibit the direct target of miR-138-5p, Nr5a1, which enhances 17ß-estradiol synthesis through cyp19a1 activation. Taken together, our results provide an insight into the mechanistic roles of lncRNA Gm2044 for 17ß-estradiol synthesis by acting as competing-endogenous RNAs to modulate the function of mpGCs. Studying the potential lncRNAs, which regulate estradiol release, will be beneficial for the diagnosis and treatment of steroid hormone-related disease.


Assuntos
Estradiol/biossíntese , Células da Granulosa/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Aromatase/biossíntese , Feminino , Camundongos , Camundongos Endogâmicos ICR , Fator Esteroidogênico 1/biossíntese
6.
Fish Shellfish Immunol ; 90: 264-273, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31054356

RESUMO

We investigated the effects of icariin (ICA) on growth performance, antioxidant capacity and non-specific immunity in Chinese mitten crab (Eriocheir sinensis). A total of 200 healthy crabs (average weight: 33.58 ±â€¯0.05 g) were randomly assigned to four treatments with five replicates, each with ten individuals per pool. There were four dietary treatments: the control group (fed with the basal diet), the ICA 50 group, the ICA100 group, and the ICA 200 group (fed with the basal diet supplemented with 50, 100, and 200 mg/kg ICA, respectively). These diets were provided for 8 weeks. Results indicated that ICA100 crabs had higher weight gain (WG), specific growth rate (SGR) and survival rate (SR) than the controls. Protein carbonyl content (PCC) and malondialdehyde (MDA) concentrations in the haemolymph and hepatopancreas of ICA100 crabs were significantly lower than in the control group, while the superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were significantly higher. The activities of PO, LZM, ACP and AKP were significantly enhanced with ICA supplementation at 50 and 100 mg/kg, yet decreased subsequently at 200 mg/kg. Furthermore, supplementation of 100 mg/kg ICA up-regulated the mRNA expression of prophenoloxidase (proPO), catalase (CAT), mitochondrial manganese superoxide dismutase (mtMnSOD), thioredoxin-1 (Trx1) and peroxiredoxin 6 (Prx6), while the mRNA expression of toll like receptors (TLRs), NF-κB-like transcription factor Relish and lipopolysaccharide-induced TNF-α factor (LITAF) were down-regulated in the hepatopancreas (P < 0.05). These findings indicate that dietary ICA supplementation at an optimum dose of 100 mg/kg may be effective in improving growth performance, antioxidant capability and non-specific immunity of Chinese mitten crab.


Assuntos
Adjuvantes Imunológicos/metabolismo , Braquiúros/imunologia , Flavonoides/metabolismo , Imunidade Inata/efeitos dos fármacos , Adjuvantes Imunológicos/administração & dosagem , Ração Animal/análise , Animais , Antioxidantes , Braquiúros/genética , Braquiúros/crescimento & desenvolvimento , Braquiúros/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Flavonoides/administração & dosagem , Distribuição Aleatória
7.
Anim Cells Syst (Seoul) ; 23(2): 128-134, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30949400

RESUMO

Long non-coding RNAs (lncRNAs) have been found to participate in the regulation of human spermatogenic cell development. However, little is known about the abnormal expression of lncRNAs associated with spermatogenic failure and their molecular mechanisms. Using lncRNA microarray of testicular tissue for male infertility and bioinformatics methods, we identified the relatively conserved lncRNA Gm2044 which may play important roles in non-obstructive azoospermia. The UCSC Genome Browser showed that lncRNA Gm2044 is the miR-202 host gene. This study revealed that lncRNA Gm2044 and miR-202 were significantly increased in non-obstructive azoospermia of spermatogonial arrest. The mRNA and protein levels of Rbfox2, a known direct target gene of miR-202, were regulated by lncRNA Gm2044. Furthermore, the miR-202-Rbfox2 signalling pathway was shown to mediate the suppressive effects of lncRNA Gm2044 on the proliferation of human testicular embryonic carcinoma cells. Understanding of the molecular signalling pathways for lncRNA-regulated spermatogenesis will provide new clues into the pathogenesis and treatment of patients with male infertility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA