Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(39): 21533-21547, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39306861

RESUMO

Pinus armandii seed kernel is a nutrient-rich and widely consumed nut whose yield and quality are affected by, among other things, harvesting time and climatic conditions, which reduce economic benefits. To investigate the optimal harvesting period of P. armandii seed kernels, this study determined the nutrient composition and seed kernel morphology and analyzed the gene expression and metabolic differences of P. armandii seed kernels during the harvesting period by transcriptomics and metabolomics. The results revealed that during the maturation of P. armandii seed kernels, there was a significant increase in the width, thickness, and weight of the seed kernels, as well as a significant accumulation of sucrose, soluble sugars, proteins, starch, flavonoids, and polyphenols and a significant decrease in lipid content. In addition, transcriptomic and metabolomic analyses of P. armandii seed kernels during the harvesting period screened and identified 103 differential metabolites (DEMs) and 8899 differential genes (DEGs). Analysis of these DEMs and DEGs revealed that P. armandii seed kernel harvesting exhibited gene-metabolite differences in sugar- and lipid-related pathways. Among them, starch and sucrose metabolism, glycolysis, and gluconeogenesis were associated with the synthesis and catabolism of sugars, whereas fatty acid degradation, glyoxylate and dicarboxylic acid metabolism, and glycerophospholipid metabolism were associated with the synthesis and catabolism of lipids. Therefore, the present study hypothesized that these differences in genes and metabolites exhibited during the harvesting period of P. armandii seed kernels might be related to the accumulation and transformation of sugars and lipids. This study may provide a theoretical basis for determining the optimal harvesting time of P. armandii seed kernels, changes in the molecular mechanisms of nutrient accumulation, and quality directed breeding.


Assuntos
Metaboloma , Pinus , Sementes , Transcriptoma , Sementes/metabolismo , Sementes/genética , Sementes/química , Sementes/crescimento & desenvolvimento , Pinus/metabolismo , Pinus/genética , Pinus/crescimento & desenvolvimento , Pinus/química , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas , Gorduras/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Graxos/metabolismo , Amido/metabolismo
2.
Int J Phytoremediation ; 26(12): 2010-2020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38932483

RESUMO

Urease-producing bacteria (UPB) are widely present in soil and play an important role in soil ecosystems. In this study, 65 UPB strains were isolated from cadmium (Cd)-polluted soil around a lead-zinc mine in Yunnan Province, China. The Cd tolerance, removal of Cd from aqueous solution, production of indoleacetic acid (IAA) and plant growth-promoting effects of these materials were investigated. The results indicate that among the 65 UPB strains, four strains with IAA-producing ability were screened and identified as Bacillus thuringiensis W6-11, B. cereus C7-4, Serratia marcescens W11-10, and S. marcescens C5-6. Among the four strains, B. cereus C7-4 had the highest Cd tolerance, median effect concentration (EC50) of 59.94 mg/L. Under Cd 5 mg/L, S. marcescens C5-6 had the highest Cd removal from aqueous solution, up to 69.83%. Under Cd 25 mg/kg, inoculation with B. cereus C7-4 significantly promoted maize growth in a sand pot by increasing the root volume, root surface area, and number of root branches by 22%, 29%, and 20%, respectively, and plant height and biomass by 16% and 36%, respectively, and significantly increasing Cd uptake in the maize roots. Therefore, UPB is a potential resource for enhancing plant adaptability to Cd stress in plants with Cd-polluted habitats.


This study utilized urease-producing bacteria screened from the soil of lead zinc mining areas in Yunnan, China as the research object, enriching the microbial resources in Yunnan. In addition, this article verified the IAA production ability and cadmium removal ability of urease-producing bacteria, and screened out bifunctional urease-producing bacteria that have potential in cadmium pollution control and plant growth promotion.


Assuntos
Biodegradação Ambiental , Cádmio , Microbiologia do Solo , Poluentes do Solo , Urease , Zea mays , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Zea mays/metabolismo , Urease/metabolismo , China , Ácidos Indolacéticos/metabolismo , Serratia marcescens/fisiologia , Reguladores de Crescimento de Plantas/metabolismo
3.
Plant Biotechnol J ; 20(3): 538-553, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34687252

RESUMO

Dipterocarpaceae are typical tropical plants (dipterocarp forests) that are famous for their high economic value because of their production of fragrant oleoresins, top-quality timber and usage in traditional Chinese medicine. Currently, the lack of Dipterocarpaceae genomes has been a limiting factor to decipher the fragrant oleoresin biosynthesis and gain evolutionary insights into high-quality wood formation in Dipterocarpaceae. We generated chromosome-level genome assemblies for two representative Dipterocarpaceae species viz. Dipterocarpus turbinatus Gaertn. f. and Hopea hainanensis Merr. et Chun. Our whole-genome duplication (WGD) analysis revealed that Dipterocarpaceae underwent a shared WGD event, which showed significant impacts on increased copy numbers of genes related to the biosynthesis of terpene, BAHD acyltransferases, fatty acid and benzenoid/phenylpropanoid, which probably confer to the formation of their characteristic fragrant oleoresin. Additionally, compared with common soft wood plants, the expansion of gene families was also found to be associated with wood formation, such as in CESA (cellulose synthase), CSLE (cellulose synthase-like protein E), laccase and peroxidase in Dipterocarpaceae genomes, which might also contribute to the formation of harder, stronger and high-density timbers. Finally, an integrative analysis on a combination of genomic, transcriptomic and metabolic data from different tissues provided further insights into the molecular basis of fragrant oleoresins biosynthesis and high-quality wood formation of Dipterocarpaceae. Our study contributes the first two representative genomes for Dipterocarpaceae, which are valuable genetic resources for further researches on the fragrant oleoresins and superior-quality timber, genome-assisted breeding and improvement, and conservation biology of this family.


Assuntos
Dipterocarpaceae , Cromossomos , Dipterocarpaceae/genética , Melhoramento Vegetal , Extratos Vegetais
4.
PeerJ ; 7: e7740, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31592192

RESUMO

Inverted cuttings of Populus yunnanensis exhibit an interesting growth response to inversion. This response is characterized by enlargement of the stem above the shoot site, while the upright stem shows obvious outward growth below the shoot site. In this study, we examined transcriptome changes in bark tissue at four positions on upright and inverted cuttings of P. yunnanensis: position B, the upper portion of the stem; position C, the lower portion of the stem; position D, the bottom of new growth; and position E, the top of new growth. The results revealed major transcriptomic changes in the stem, especially at position B, but little alteration was observed in the bark tissue of the new shoot. The differentially expressed genes (DEGs) were mainly assigned to four pathways: plant hormone signal transduction, plant-pathogen interaction, mitogen-activated protein kinase (MAPK) signaling pathway-plant, and adenosine triphosphate-binding cassette (ABC) transporters. Most of these DEGs were involved in at least two pathways. The levels of many hormones, such as auxin (IAA), cytokinin (CTK), gibberellins (GAs), ethylene (ET), and brassinosteroids (BRs), underwent large changes in the inverted cuttings. A coexpression network showed that the top 20 hub unigenes at position B in the upright and inverted cutting groups were associated mainly with the BR and ET signaling pathways, respectively. Furthermore, brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) in the BR pathway and both ethylene response (ETR) and constitutive triple response 1 (CTR1) in the ET pathway were important hubs that interfaced with multiple pathways.

5.
PLoS One ; 14(6): e0218455, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31216332

RESUMO

Populus tomentosa, of section Populus, is distributed mainly in northern China. This species has high resistance to many diseases and insects, and it plays key roles in shelterbelts and urban afforestation in northern China. It has long been suspected to be a hybrid, but its parents remain unknown. In the present study, we report four newly sequenced complete cp genomes from section Populus and comparative genomic analyses of these new sequences and three published cp genome sequences. The seven cp genomes ranged from 155,853 bp (P. tremula var. davidiana) to 156,746 bp (P. adenopoda) in length, and their gene orders, gene numbers and GC contents were similar. We analyzed SNPs, indels, SSRs and repeats among the seven cp genomes, and eight small inversions were detected in the ndhC-trnV, rbcL-accD, petA-psbJ, trnW-trnP, rpl16-rps3, trnL-ycf15, ycf15-trnL, and ndhF-trnL intergenic regions. Furthermore, seven divergent regions (trnH-psbA, matK, psbM-psbD, ndhC-trnV, ycf1, ndhF-ccsA and ccsA-ndhD) were found in more highly variable regions. The phylogenetic tree reveals that P. tomentosa is closely related to P. alba and P. alba var. pyramidalis. Hence, P. alba was involved in the formation of P. tomentosa.


Assuntos
Evolução Molecular , Genoma de Cloroplastos/genética , Genômica , Populus/genética , China , Cloroplastos/genética , Repetições de Microssatélites/genética , Filogenia , Populus/classificação
6.
Front Plant Sci ; 10: 5, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723484

RESUMO

Populus, a core genus of Salicaceae, plays a significant ecological role as a source of pioneer species in boreal forests. However, interspecific hybridization and high levels of morphological variation among poplars have resulted in great difficulty in classifying species for systematic and comparative evolutionary studies. Here, we present phylogenetic analyses of 24 newly sequenced Populus plastomes and 36 plastomes from GenBank, which represent seven genera of Salicaceae, in combination with a matrix of eighteen morphological characters of 40 Populus taxa to reconstruct highly supported relationships of genus Populus. Relationships among the 60 taxa of Salicaceae strongly supported two monophyletic genera: Populus and Salix. Chosenia was nested within the genus Salix, and five clades within Populus were divided. Clade I included the three taxa P. euphratica, P. pruinosa, and P. ilicifolia. Clade II contained thirteen taxa [P. adenopoda, P. alba, P. bolleana, P. davidiana, P. hopeiensis, P. nigra, P. qiongdaoensis, P. rotundifolia, P. rotundifolia var. duclouxiana, P. tremula, P. tremula × alba, P. tomentosa, and P. tomentosa (NC)]. Clade III included the ten taxa P. haoana, P. kangdingensis, P. lasiocarpa, P. pseudoglauca, P. qamdoensis, P. schneideri, P. simonii, P. szechuanica, P. szechuanica var. tibetica, and P. yunnanensis. Clade IV included P. cathayana, P. gonggaensis, P. koreana, P. laurifolia, P. trinervis, P. wilsonii, and P. xiangchengensis. The last clade comprised P. angustifolia, P. balsamifera, P. deltoides, P. deltoides × nigra, P. fremontii, P. mexicana, and P. trichocarpa. This phylogeny is also supported by morphological traits, including bark smoothness, bud size, petiole shape, leaf inflorescence, male anther length and male anther tip.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA