Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Immunol ; 20(12): 1457-1471, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37978243

RESUMO

The G protein-coupled receptor ADGRE5 (CD97) binds to various metabolites that play crucial regulatory roles in metabolism. However, its function in the antiviral innate immune response remains to be determined. In this study, we report that CD97 inhibits virus-induced type-I interferon (IFN-I) release and enhances RNA virus replication in cells and mice. CD97 was identified as a new negative regulator of the innate immune receptor RIG-I, and RIG-1 degradation led to the suppression of the IFN-I signaling pathway. Furthermore, overexpression of CD97 promoted the ubiquitination of RIG-I, resulting in its degradation, but did not impact its mRNA expression. Mechanistically, CD97 upregulates RNF125 expression to induce RNF125-mediated RIG-I degradation via K48-linked ubiquitination at Lys181 after RNA virus infection. Most importantly, CD97-deficient mice are more resistant than wild-type mice to RNA virus infection. We also found that sanguinarine-mediated inhibition of CD97 effectively blocks VSV and SARS-CoV-2 replication. These findings elucidate a previously unknown mechanism through which CD97 negatively regulates RIG-I in the antiviral innate immune response and provide a molecular basis for the development of new therapeutic strategies and the design of targeted antiviral agents.


Assuntos
Infecções por Vírus de RNA , Vírus de RNA , Animais , Camundongos , Antivirais/farmacologia , Proteína DEAD-box 58/metabolismo , Imunidade Inata , Receptores Acoplados a Proteínas G/metabolismo , Infecções por Vírus de RNA/genética , Vírus de RNA/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33361422

RESUMO

DNA damage-inducible transcript 3 (DDIT3) plays important roles in endoplasmic reticulum (ER) stress-induced apoptosis and autophagy, but its role in innate immunity is not clear. Here, we report that DDIT3 inhibits the antiviral immune response during bovine viral diarrhea virus (BVDV) infection by targeting mitochondrial antiviral signaling (MAVS) in Madin-Darby bovine kidney (MDBK) cells and in mice. BVDV infection induced high DDIT3 mRNA and protein expression. DDIT3 overexpression inhibited type I interferon (IFN-I) and IFN-stimulated gene production, thereby promoting BVDV replication, while DDIT3 knockdown promoted the antiviral innate immune response to suppress viral replication. DDIT3 promoted NF-κB-dependent ovarian tumor (OTU) deubiquitinase 1 (OTUD1) expression. Furthermore, OTUD1 induced upregulation of the E3 ubiquitin ligase Smurf1 by deubiquitinating Smurf1, and Smurf1 degraded MAVS in MDBK cells in a ubiquitination-dependent manner, ultimately inhibiting IFN-I production. Moreover, knocking out DDIT3 promoted the antiviral innate immune response to reduce BVDV replication and pathological changes in mice. These findings provide direct insights into the molecular mechanisms by which DDIT3 inhibits IFN-I production by regulating MAVS degradation.IMPORTANCE Extensive studies have demonstrated roles of DDIT3 in apoptosis and autophagy during viral infection. However, the role of DDIT3 in innate immunity remains largely unknown. Here, we show that DDIT3 is positively regulated in bovine viral diarrhea virus (BVDV)-infected Madin-Darby bovine kidney (MDBK) cells and could significantly enhance BVDV replication. Importantly, DDIT3 induced OTU deubiquitinase 1 (OTUD1) expression by activating the NF-κB signaling pathway, thus increasing intracellular Smurf1 protein levels to degrade MAVS and inhibit IFN-I production during BVDV infection. Together, these results indicate that DDIT3 plays critical roles in host innate immunity repression and viral infection facilitation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vírus da Diarreia Viral Bovina Tipo 1/fisiologia , Imunidade Inata , Fator de Transcrição CHOP/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Replicação Viral , Animais , Antivirais/antagonistas & inibidores , Antivirais/imunologia , Bovinos , Vírus da Diarreia Viral Bovina Tipo 1/patogenicidade , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Transcrição CHOP/deficiência , Fator de Transcrição CHOP/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA