Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Autophagy ; : 1-22, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38433354

RESUMO

Macroautophagy/autophagy-mediated anoikis resistance is crucial for tumor metastasis. As a key autophagy-related protein, ATG4B has been demonstrated to be a prospective anti-tumor target. However, the existing ATG4B inhibitors are still far from clinical application, especially for tumor metastasis. In this study, we identified a novel circRNA, circSPECC1, that interacted with ATG4B. CircSPECC1 facilitated liquid-liquid phase separation of ATG4B, which boosted the ubiquitination and degradation of ATG4B in gastric cancer (GC) cells. Thus, pharmacological addition of circSPECC1 may serve as an innovative approach to suppress autophagy by targeting ATG4B. Specifically, the circSPECC1 underwent significant m6A modification in GC cells and was subsequently recognized and suppressed by the m6A reader protein ELAVL1/HuR. The activation of the ELAVL1-circSPECC1-ATG4B pathway was demonstrated to mediate anoikis resistance in GC cells. Moreover, we also verified that the above pathway was closely related to metastasis in tissues from GC patients. Furthermore, we determined that the FDA-approved compound lopinavir efficiently enhanced anoikis and prevented metastasis by eliminating repression of ELAVL1 on circSPECC1. In summary, this study provides novel insights into ATG4B-mediated autophagy and introduces a viable clinical inhibitor of autophagy, which may be beneficial for the treatment of GC with metastasis.

2.
Cancer Lett ; 584: 216598, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224863

RESUMO

N6-methyladenosine (m6A), a dynamically reversible modification in eukaryotic RNAs, modulates gene expression and pathological processes in various tumors. KIAA1429, the largest component of the m6A methyltransferase complex, plays an important role in m6A modification. However, the underlying mechanism of KIAA1429 in hepatocellular carcinoma (HCC) remains largely unknown. Immunohistochemical assay was performed to examine the expression of KIAA1429 in HCC tissues. Transwell, wound healing and animal experiments were used to investigate the influence of KIAA1429 on cell migration and invasion. The mRNA high-throughput sequencing (RNA-seq) and methylated RNA immunoprecipitation sequencing (MeRIP-seq) were performed to screen the downstream target of KIAA1429. RNA stability assays, RNA immunoprecipitation assay (RIP), MeRIP-qPCR and luciferase assay were used to evaluate the relationship between KIAA1429 and the m6A-modified genes. Results showed that the expression level of KIAA1429 was significantly higher in HCC tissues than in adjacent tissues, and the upregulation of KIAA1429 could promote HCC metastasis in vitro and in vivo. Mechanistically, we confirmed that KIAA1429 negatively regulated the tumor suppressor, Rho family GTPase 3 (RND3), by decreasing its mRNA stability in coordination with the m6A reader YTHDC1. Moreover, we demonstrated that KIAA1429 could regulate the m6A modification of RND3 mRNA via its RNA binding domain. Our data indicated that KIAA1429 exerted its oncogenic role by inhibiting RND3 expression in an m6A-dependent manner, suggesting that KIAA1429 might be a potential prognostic biomarker and therapeutic target in HCC.


Assuntos
Adenina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Adenina/análogos & derivados , Carcinoma Hepatocelular/genética , Regulação para Baixo , Neoplasias Hepáticas/genética , RNA , RNA Mensageiro , Humanos
3.
Genomics ; 116(1): 110764, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113974

RESUMO

Sorafenib is currently the first-line treatment for patients with advanced liver cancer, but its therapeutic efficacy declines significantly after a few months of treatment. Therefore, it is of great importance to investigate the regulatory mechanisms of sorafenib sensitivity in liver cancer cells. In this study, we provided initial evidence demonstrating that circPHKB, a novel circRNA markedly overexpressed in sorafenib-treated liver cancer cells, attenuated the sensitivity of liver cancer cells to sorafenib. Mechanically, circPHKB sequestered miR-1234-3p, resulting in the up-regulation of cytochrome P450 family 2 subfamily W member 1 (CYP2W1), thereby reducing the killing effect of sorafenib on liver cancer cells. Moreover, knockdown of circPHKB sensitized liver cancer cells to sorafenib in vivo. The findings reveal a novel circPHKB/miR-1234-3p/CYP2W1 pathway that decreases the sensitivity of liver cancer cells to sorafenib, suggesting that circPHKB and the axis may serve as promising targets to improve the therapeutic efficacy of sorafenib against liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , MicroRNAs/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Regulação para Cima , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Família 2 do Citocromo P450/genética
4.
J Clin Transl Hepatol ; 11(2): 360-368, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-36643035

RESUMO

Background and Aims: 125I radioactive particles implantation have demonstrated efficacy in eradicating hepatocellular carcinoma (HCC). However, progressive resistance of HCC to 125I radioactive particles has limited its wide clinical application. Methods: We investigated the cellular responses to 125I radioactive particles treatment and autophagy-related 9B (ATG9B) silencing in HCC cell lines and Hep3B xenografted tumor model using Cell Counting Kit-8 reagent, western blotting, immunofluorescence, flow cytometry, transmission electron microscopy and immunohistochemistry. Results: In this study, we demonstrated that 125I radioactive particles induced cell apoptosis and protective autophagy of HCC in vitro and in vivo. Inhibition of autophagy enhanced the radiosensitivity of HCC to 125I radioactive particles. Moreover, 125I radioactive particles induced autophagy by upregulating ATG9B, with increased expression level of LC3B and decreased expression level of p62. Furthermore, ATG9B silencing downregulated LC3B expression and upregulated p62 expression and enhanced radiosensitivity of HCC to 125I radioactive particles in vitro and in vivo. Conclusions: Inhibition of ATG9B enhanced the antitumor effects of 125I particle radiation against HCC in vitro and in vivo. Our findings suggest that 125I particle radiation plus chloroquine or/and the ATG9B inhibitor may be a novel therapeutic strategy for HCC.

5.
Autophagy ; 19(3): 1039-1041, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36056541

RESUMO

ATG4B, a cysteine protease promoting autophagosome formation by reversibly modifying Atg8-family proteins, plays a vital role in controlling macroautophagy/autophagy initiation in response to stress. However, the molecular mechanism underlying the regulation of ATG4B activity is far from well elucidated. In the current study, we firstly revealed that the acetylation level of ATG4B at lysine residue 39 (K39) is strongly involved in regulating its activity and autophagy. Specifically, SIRT2 deacetylates ATG4B K39, enhancing ATG4B activity and autophagic flux, which can be antagonized by EP300/p300. Starvation treatment contributes to EP300 suppression and SIRT2 activation, promoting the deacetylation of ATG4B K39, which leads to the elevation of ATG4B activity and finally autophagy initiation. Mechanistic investigation showed that starvation reduces CCNE (cyclin E), resulting in the downregulation of the CCNE-CDK2 protein complex, decreasing the phosphorylation of SIRT2 Ser331 and finally activating SIRT2. In addition, we confirmed that SIRT2 promotes autophagy via suppressing acetylation of ATG4B at K39 using sirt2 gene knockout (sirt2-/-) mice. Collectively, our results have revealed the acetylation-mediated regulation of ATG4B cysteine protease activity in autophagy initiation in response to nutritional deficiency.


Assuntos
Autofagia , Cisteína Proteases , Camundongos , Animais , Autofagia/fisiologia , Sirtuína 2/metabolismo , Acetilação , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Proteases/metabolismo , Cisteína Endopeptidases/metabolismo
6.
Chem Biol Interact ; 364: 110060, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35872041

RESUMO

Epirubicin (EPI)-based transarterial chemoembolization is an effective therapy for advanced hepatocellular carcinoma (HCC). However, EPI-induced survivin expression limits its tumor-killing potential in HCC. Interestingly, (-)-gossypol ((-)-Gsp), a male contraceptive, suppresses various malignancies. More importantly, (-)-Gsp also holds promise for enhancing the antitumor effects of chemotherapy in numerous cancer types. In the present study, we demonstrated for the first time that (-)-Gsp-sensitized EPI inhibited cell growth and induced apoptosis of HCC cells in vitro. Furthermore, (-)-Gsp sensitized EPI by attenuating the EPI-elevated survivin protein levels. Mechanistic studies showed that EPI stimulated survivin protein synthesis by promoting translation initiation, which was alleviated by (-)-Gsp mainly through suppressing the AKT-4EBP1/p70S6K-survivin and ERK-4EBP1-survivin pathways. HCC xenograft experiments in nude mice also showed that (-)-Gsp treatment acted synergistically with EPI to repress xenograft tumor growth. Overall, our proof-of-concept results may pave the way for novel strategies for the treatment of HCC based on the combination of EPI and (-)-Gsp.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Gossipol , Neoplasias Hepáticas , Animais , Apoptose , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Epirubicina/farmacologia , Epirubicina/uso terapêutico , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Nus , Survivina , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Dis Markers ; 2022: 9230647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35578690

RESUMO

To investigate the radioactive iodine-125 (I-125) seed on migrating and invading of hepatocellular carcinoma (HCC) cells and its mechanism, the irradiation of PLC and Huh7 cells was carried out with I-125 seeds in vitro. Cell counting kit 8 assay was employed to measure cell viability. Cell migration was evaluated by using wound-healing assay. Cell invasion was detected by Transwell assay; RT-PCR and Western blot were used for the detection of the mRNA and proteins of TGF-ß1 signaling pathway-related genes. The viability of PLC and Huh7 cells declined in a dose-dependent manner with increasing irradiation from 0 Gy, 2 Gy, 4 Gy, and 6 Gy, to 8 Gy, respectively. The IC50 of PLC and Huh7 cells were 6.20 Gy and 5.39 Gy, respectively, after 24 h of irradiation. Migration and invasion abilities of I-125 group cells were greatly weakened (P < 0.05) comparing with the control group. According to the outcomes of RT-PCR and WB, I-125 seed irradiation significantly inhibited the mRNA and protein expression of N-cadherin, vimentin, TGF-ß1, p-Smad2/3, and Snail. But the mRNA and protein expressions of E-cadherin were enhanced. Rescue experiment demonstrates that TGF-ß1 activator could reverse the inhibitory effects of I-125 on invasion and migration of cells. The results of in vivo experiments further verified that the I-125 seeds can inhibit the proliferation and TGF-ß1 of xenographed PLC cells. In conclusion, I-125 seeds restrain the invasion and migration of HCC cells by suppressing epithelial to mesenchymal transition, which may associate with the inhibition of the TGF-ß1 signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias da Glândula Tireoide , Carcinogênese , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/radioterapia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Humanos , Radioisótopos do Iodo/farmacologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/radioterapia , RNA Mensageiro , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética
8.
Oncogene ; 41(13): 1882-1894, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35149838

RESUMO

Colorectal cancer liver metastasis (CRLM) is the leading cause of colorectal cancer-related deaths and remains a clinical challenge. Enhancement of glucose uptake is involved in CRLM; however, whether long noncoding RNAs (lncRNAs) participate in these molecular events remains largely unclear. Here, we report an lncRNA, GAL (glucose transporter 1 (GLUT1) associated lncRNA), that was upregulated in CRLM tissues compared with primary colorectal cancer (CRC) tissues or matched normal tissues and was associated with the overall survival rates of CRLM patients. Functionally, GAL served as an oncogene because it promoted CRC cell migration and invasion in vitro and enhanced the ability of CRC cells to metastasize from the intestine to the liver in vivo. Mechanistically, GAL interacted with the GLUT1 protein to increase GLUT1 SUMOylation, inhibiting the effect of the ubiquitin-proteasome system on the GLUT1 protein. GLUT1-knockout (-/+) repressed the GAL-mediated increase in CRC cell uptake of glucose, migrate, and invade in vitro, as well as metastasis from the intestine to the liver in vivo, and enforced expression of GLUT1 rescued GAL knockout-induced biological functions in CRC cells. Taken together, our findings demonstrated that GAL promotes CRLM by stabilizing GLUT1, suggesting that the GAL-GLUT1 complex may act as a potential therapeutic target for CRLM.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , RNA Longo não Codificante , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Metástase Neoplásica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
9.
Front Cell Dev Biol ; 9: 687524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34409031

RESUMO

Autophagy is closely related to the growth and drug resistance of cancer cells, and autophagy related 4B (ATG4B) performs a crucial role in the process of autophagy. The long non-coding RNA (lncRNA) colorectal neoplasia differentially expressed (CRNDE) promotes the progression of hepatocellular carcinoma (HCC), but it is unclear whether the tumor-promoting effect of CRNDE is associated with the regulation of ATG4B and autophagy. Herein, we for the first time demonstrated that CRNDE triggered autophagy via upregulating ATG4B in HCC cells. Mechanistically, CRNDE enhanced the stability of ATG4B mRNA by sequestrating miR-543, leading to the elevation of ATG4B and autophagy in HCC cells. Moreover, sorafenib induced CRNDE and ATG4B as well as autophagy in HCC cells. Knockdown of CRNDE sensitized HCC cells to sorafenib in vitro and in vivo. Collectively, these results reveal that CRNDE drives ATG4B-mediated autophagy, which attenuates the sensitivity of sorafenib in HCC cells, suggesting that the pathway CRNDE/ATG4B/autophagy may be a novel target to develop sensitizing measures of sorafenib in HCC treatment.

10.
Exp Cell Res ; 406(1): 112755, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34332981

RESUMO

Liver cancer is one of the most common and high recurrence malignancies. Besides radiotherapy and surgery, chemotherapy also plays an essential role in the treatment of liver cancer. Sorafenib and sorafenib-based combination therapies have been proven efficacy against tumors. However, previous clinical studies have indicated that some patients with liver cancer are resistant to sorafenib treatment and the existing strategies are not satisfactory in the clinic. Therefore, it is urgent to investigate strategies to improve the effectiveness of sorafenib for liver cancer and to explore effective drug combinations. In the present study, we found that dichloroacetate (DCA) could significantly enhance the anti-tumor effect of sorafenib on liver cancer cells, including reduced viability and dramatically promoted apoptosis in liver cancer cells. Moreover, compared to sorafenib alone, the combination of DCA and sorafenib markedly increased the degradation of anti-apoptotic protein Mcl-1 by enhancing its phosphorylation. Overexpression of Mcl-1 could significantly attenuate the synergetic effect of DCA and sorafenib on apoptosis induction in liver cancer cells. Furthermore, we found that the ROS-JNK pathway was obviously activated in the DCA combined sorafenib group. The levels of ROS and p-JNK were dramatically up-regulated in the two drug combination groups. Antioxidant NAC could alleviate the synergetic effects of DCA and sorafenib on ROS generation, JNK activation, Mcl-1 degradation, and cell apoptosis. Moreover, DCA and sorafenib's effects on Mcl-1 degradation and apoptosis could also be inhibited by JNK inhibitor 'SP'600125. Finally, the synergetic effects of DCA and sorafenib on tumor growth suppression, Mcl-1 degradation and induction of apoptosis were also validated in liver cancer xenograft in vivo. These findings indicate that DCA enhances the anti-tumor effect of sorafenib via the ROS-JNK-Mcl-1 pathway in liver cancer cells. This study may provide new insights to improve the chemotherapeutic effect of sorafenib, which may be beneficial for further clinical application of sorafenib in liver cancer treatment.


Assuntos
Ácido Dicloroacético/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hepáticas/tratamento farmacológico , MAP Quinase Quinase 4/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Sorafenibe/farmacologia , Acetilcisteína/farmacologia , Animais , Antracenos/farmacologia , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos Nus , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Technol Cancer Res Treat ; 19: 1533033820967473, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33073697

RESUMO

MiR-124-3p has been identified as a novel tumor suppressor and a potential therapeutic target in hepatocellular carcinoma (HCC) through regulating its target genes. However, the upstream regulatory mechanisms of mir-124-3p in HCC has not been fully understood. The transcription factor liver X receptor (LXR) plays a critical role in suppressing the proliferation of HCC cells, but it is unclear whether LXR is involved in the regulation of mir-124-3p. In the present study, we demonstrated that the expression of mir-124-3p was positively correlated with that of LXR in HCC, and the cell growth of HCC was significantly inhibited by LXR agonists. Moreover, activation of LXR with the agonists up-regulated the expression of mir-124-3p, and in turn down-regulated cyclin D1 and cyclin-dependent kinase 6 (CDK6) expression, which are the target genes of mir-124-3p. Mechanistically, miR-124-3p mediates LXR induced inhibition of HCC cell growth and down-regulation of cyclin D1 and CDK6 expression. In vivo experiments also confirmed that LXR induced miR-124-3p expression inhibited the growth of HCC xenograft tumors, as well as cyclin D1 and CDK6 expression. Our findings revealed that miR-124-3p is a novel target gene of LXR, and regulation of the miR-124-3p-cyclin D1/CDK6 pathway by LXR plays a crucial role in the proliferation of HCC cells. LXR-miR-124-3p-cyclin D1/CDK6 pathway may be a novel potential therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular/genética , Ciclina D1/genética , Quinase 6 Dependente de Ciclina/genética , Neoplasias Hepáticas/genética , Receptores X do Fígado/genética , MicroRNAs/genética , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Neoplasias Hepáticas/patologia , Camundongos
12.
Mol Cancer ; 19(1): 56, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164722

RESUMO

BACKGROUND: Aberrant expression of circular RNAs contributes to the initiation and progression of cancers, but the underlying mechanism remains elusive. METHODS: RNA-seq and qRT-PCR were performed to screen differential expressed circRNAs between gastric cancer tissues and adjacent normal tissues. Candidate circRNA (circMRPS35) was screened out and validated by qRT-PCR. Cell proliferation and invasion ability were determined by CCK-8 and cell invasion assays. RNA-seq, GO-pathway, RNA pull-down and ChIRP were further applied to search for detailed mechanism. RESULTS: Here, a novel circRNA named circMRPS35, was screened out by RNA-seq in gastric cancer tissues, whose expression is related to clinicopathological characteristics and prognosis in gastric cancer patients. Biologically, circMRPS35 suppresses the proliferation and invasion of gastric cancer cells in vitro and in vivo. Mechanistically, circMRPS35 acts as a modular scaffold to recruit histone acetyltransferase KAT7 to the promoters of FOXO1 and FOXO3a genes, which elicits acetylation of H4K5 in their promoters. Particularly, circMRPS35 specifically binds to FOXO1/3a promoter regions directly. Thus, it dramatically activates the transcription of FOXO1/3a and triggers subsequent response of their downstream target genes expression, including p21, p27, Twist1 and E-cadherin, resulting in the inhibition of cell proliferation and invasion. Moreover, circMRPS35 expression positively correlates with that of FOXO1/3a in gastric cancer tissues. CONCLUSIONS: Our findings not only reveal the pivotal roles of circMRPS35 in governing histone modification in anticancer treatment, but also advocate for triggering circMRPS35/KAT7/FOXO1/3a pathway to combat gastric cancer.


Assuntos
Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Acetiltransferases/metabolismo , Histonas/química , RNA Circular/genética , Neoplasias Gástricas/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Progressão da Doença , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/genética , Histona Acetiltransferases/genética , Humanos , Camundongos , Camundongos Nus , Prognóstico , Processamento de Proteína Pós-Traducional , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Biomaterials ; 232: 119730, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31918224

RESUMO

Rheumatoid arthritis (RA) is an immune-mediated inflammatory disease that results in synovitis, cartilage destruction, and even loss of joint function. The frequent and long-term administration of anti-rheumatic drugs often leads to obvious adverse effects and patient non-compliance. Therefore, to specifically deliver dexamethasone (Dex) to inflamed joints and reduce the administration frequency of Dex, we developed Dex-loaded reactive oxygen species (ROS)-responsive nanoparticles (Dex/Oxi-αCD NPs) and folic acid (FA) modified Dex/Oxi-αCD NPs (Dex/FA-Oxi-αCD NPs) and validated their anti-inflammatory effect in vitro and in vivo. In vitro study demonstrated that these NPs can be effectively internalized by activated macrophages and the released Dex from NPs significantly downregulated the expression of iRhom2, TNF-α, and BAFF in activated Raw264.7. In vivo experiments revealed that Dex/Oxi-αCD NPs, especially Dex/FA-Oxi-αCD NPs significantly accumulated at inflamed joints in collagen-induced arthritis (CIA) mice and alleviated the joint swelling and cartilage destruction. Importantly, the expression of iRhom2, TNF-α, and BAFF in the joint was inhibited by intravenous injection of Dex/Oxi-αCD NPs and Dex/FA-Oxi-αCD NPs. Collectively, our data revealed that Dex-loaded ROS-responsive NPs can target inflamed joints and attenuate arthritis, and the 'iRhom2-TNF-α-BAFF' pathway plays an important role in the treatment of RA with the NPs, suggesting that this pathway may be a novel target for RA therapy.


Assuntos
Artrite Experimental , Artrite Reumatoide , Nanopartículas , Animais , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Proteínas de Transporte , Dexametasona , Camundongos , Espécies Reativas de Oxigênio , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
14.
Cancer Drug Resist ; 3(4): 947-958, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35582217

RESUMO

Aim: Liver cancer is one of the most common malignancies and has a high recurrence rate. However, current treatment strategies do not achieve satisfactory outcomes in the clinic. To explore a new strategy to enhance the effectiveness of chemotherapy in liver cancer, we investigated whether dichloroacetate (DCA) could enhance the sensitivity of liver cancer cells to pirarubicin (THP). Methods: Liver cancer cells were treated with DCA alone, THP alone, or DCA and THP combined. Cell viability was determined by the CCK-8 assay. Cell apoptosis was analyzed by flow cytometer. Reactive oxygen species (ROS) were detected using a CM-H2DCFDA fluorescence probe. Protein levels were identified by immunoblotting. Results: The results revealed that DCA significantly enhanced the antitumor effect of THP in liver cancer cells. Changes in morphology and adherence ability were observed, as well as decreased cell viability. The results of flow cytometry showed that the combination of THP and DCA significantly increased apoptosis of liver cancer cells. Moreover, compared with THP alone, combination treatment with DCA significantly increased THP-triggered ROS generation in liver cancer cells. The antioxidant N-acetyl-L-cysteine reversed the synergistic effect of DCA and THP on ROS generation, cell viability and apoptosis. Furthermore, phosphorylation of c-Jun N-terminal kinase (JNK) was significantly increased in the DCA and THP combination group. The effects of DCA and THP on cell viability and apoptosis were inhibited by the JNK inhibitor SP600125. Conclusion: The results obtained in the present study indicated that DCA enhanced the antitumor effect of THP in liver cancer cells via regulating the ROS-JNK signaling pathway.

15.
J Cancer ; 10(19): 4662-4670, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31528231

RESUMO

Background: Long noncoding RNAs (lncRNAs) have been demonstrated to play essential roles in renal cell carcinoma (RCC). However, the role of lncRNA KCNQ1DN in RCC remains unclear. Methods: The expression of KCNQ1DN in RCC and the corresponding adjacent tissues was measured by qPCR. RNA fluorescence in situ hybridization (FISH) assay, methylation analysis, reporter gene assays and functional tests were performed to reveal the effects of KCNQ1DN on RCC. Results: In the present study, we found that lncRNA KCNQ1DN was notably decreased in RCC tissues and cell lines. RNA FISH assay showed that KCNQ1DN mainly localized to the cytoplasm. Methylation analysis revealed that the proximal region of KCNQ1DN promoter was hypermethylated in RCC tissues relative to the adjacent normal ones. Functional studies clarified that KCNQ1DN repressed the RCC cell growth and cell cycle progression. Mechanistically, KCNQ1DN inhibited the expression of c-Myc, which might further upregulate cyclin D1 and suppress p27 at mRNA and protein levels in RCC cells. Reporter gene assays revealed that the transcriptional activity of c-Myc promoter was inhibited by KCNQ1DN. The in vivo experiments in nude mice showed that KCNQ1DN overexpression dramatically repressed the growth of xenograft tumors and the expression of corresponding c-Myc. Conclusion: These results indicated that KCNQ1DN inhibit the growth of RCC cells in vitro and in vivo through repressing the oncogene c-myc, suggesting that KCNQ1DN may serve as a novel target for the treatment of RCC.

16.
J Immunol Res ; 2019: 8042097, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240234

RESUMO

B cell activating factor (BAFF), a member of the tumor necrosis factor (TNF) family, plays a critical role in the pathogenesis and progression of rheumatoid arthritis (RA). Chlorogenic acid (CGA) is a phenolic compound and exerts antiarthritic activities in arthritis. However, it is not clear whether the anti-inflammatory property of CGA is associated with the regulation of BAFF expression. In this study, we found that treatment of the collagen-induced arthritis (CIA) mice with CGA significantly attenuated arthritis progression and markedly inhibited BAFF production in serum as well as the production of serum TNF-α. Furthermore, CGA inhibits TNF-α-induced BAFF expression in a dose-dependent manner and apoptosis in MH7A cells. Mechanistically, we found the DNA-binding site for the transcription factor NF-κB in the BAFF promoter region is required for this regulation. Moreover, CGA reduces the DNA-binding activity of NF-κB to the BAFF promoter region and suppresses BAFF expression through the NF-κB pathway in TNF-α-stimulated MH7A cells. These results suggest that CGA may serve as a novel therapeutic agent for the treatment of RA by targeting BAFF.


Assuntos
Fator Ativador de Células B/genética , Ácido Clorogênico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Artrite Experimental , Fator Ativador de Células B/metabolismo , Biomarcadores , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Regiões Promotoras Genéticas , Ativação Transcricional , Fator de Necrose Tumoral alfa/metabolismo
17.
Oncol Rep ; 42(2): 785-796, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31233189

RESUMO

Sorafenib is the first­line drug used in the treatment of liver cancer; however, drug resistance seriously limits the clinical response to sorafenib. The present study investigated the molecular mechanisms of sorafenib resistance in liver cancer cells. The data indicated that forkhead box M1 (FoxM1) was significantly overexpressed in sorafenib­resistant cells, at the mRNA and protein levels. Knockdown of FoxM1 rendered drug­tolerant cells sensitive to sorafenib. Furthermore, FoxM1 was upregulated at the transcriptional level. Overexpression of c­jun was associated with the upregulation of FoxM1. The results of a reporter gene assay, electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that there is an activator protein­1 (AP1) binding site in the promoter of FoxM1, located at ­608 to ­618. Knockdown of c­jun significantly decreased the levels of FoxM1, accompanied by enhanced cell sensitivity to sorafenib. Furthermore, the activation of AKT contributed to the upregulation of c­jun and FoxM1. Inhibition of AKT using BEZ­235 markedly suppressed the upregulation of c­jun and FoxM1, and increased the sensitivity of drug­resistant cells to sorafenib in vitro and in vivo. The data indicated that the activation of the AKT/AP1/FoxM1 signaling axis is an important determinant of sorafenib tolerance.


Assuntos
Carcinoma Hepatocelular/patologia , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box M1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sorafenibe/farmacologia , Fator de Transcrição AP-1/metabolismo , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Proteína Forkhead Box M1/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/genética , Fator de Transcrição AP-1/genética , Ativação Transcricional , Células Tumorais Cultivadas
18.
J Cancer ; 10(2): 367-377, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30719130

RESUMO

Colorectal cancer (CRC) usually gives rise to transcoelomic spread and ultimately causes peritoneal carcinomatosis (PC). However, mechanism studies, especially the immunological basis of colorectal PC, are rarely revealed due to lack of a suitable PC model. Here we selected a mouse colorectal cancer cell line MC-38 for intraperitoneal inoculation in the C57BL/6 mice to mimic the development of colorectal PC. We demonstrated that the injected CRC cells preferentially and rapidly migrated and colonized in the visceral fat tissues, but not in other visceral organs. With flow cytometric analysis, we found the proportions of spleen T cells and B cells were not affected by PC progression, while the ratios of blood CD4+ and CD8+ T cells were largely influenced. Especially, the quantity or activity of CD4+ and CD8+ T cells in visceral fats were intimately regulated by PC development. Taken together, we successfully constructed a colorectal PC model in immune-competent mice and revealed the alteration of adaptive immunity in PC development. Our study might potentiate the research and therapy strategies of colorectal PC.

19.
Nat Commun ; 9(1): 2574, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968710

RESUMO

Metabolic reprogramming greatly contributes to the regulation of macrophage activation. However, the mechanism of lipid accumulation and the corresponding function in tumor-associated macrophages (TAMs) remain unclear. With primary investigation in colon cancer and confirmation in other cancer models, here we determine that deficiency of monoacylglycerol lipase (MGLL) results in lipid overload in TAMs. Functionally, macrophage MGLL inhibits CB2 cannabinoid receptor-dependent tumor progression in inoculated and genetic cancer models. Mechanistically, MGLL deficiency promotes CB2/TLR4-dependent macrophage activation, which further suppresses the function of tumor-associated CD8+ T cells. Treatment with CB2 antagonists delays tumor progression in inoculated and genetic cancer models. Finally, we verify that expression of macrophage MGLL is decreased in cancer tissues and positively correlated with the survival of cancer patients. Taken together, our findings identify MGLL as a switch for CB2/TLR4-dependent macrophage activation and provide potential targets for cancer therapy.


Assuntos
Macrófagos/imunologia , Monoacilglicerol Lipases/metabolismo , Neoplasias/patologia , Receptor CB2 de Canabinoide/metabolismo , Idoso , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Metabolismo dos Lipídeos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Monoacilglicerol Lipases/genética , Neoplasias/imunologia , Cultura Primária de Células , Células RAW 264.7 , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/imunologia , Receptor 4 Toll-Like/metabolismo
20.
Mol Carcinog ; 57(9): 1213-1222, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29856104

RESUMO

The BH3 mimetic (-)-gossypol (-)-G has shown promising efficacy to kill several kinds of cancer cells or potentiate current chemotherapeutics. But it induces limited apoptosis in cancer cells with high level of Bcl-2. The nuclear receptor PPARγ and its agonist rosiglitazone can suppress various malignancies. More importantly, rosiglitazone is able to enhance the anti-tumor effects of chemotherapy drugs such as carboplatin and tyrosine kinase inhibitors. In this study, we for the first time demonstrated that rosiglitazone could sensitize (-)-G to induce apoptosis in cancer cells with high level of Bcl-2. Furthermore, we found that (-)-G increased the mRNA level and protein stability of Mcl-1, which weakened the pro-apoptotic effect of (-)-G. Rosiglitazone attenuated the (-)-G-induced Mcl-1 stability through decreasing JNK phosphorylation. Additionally, rosiglitazone upregulated dual-specificity phosphatase 16 (DUSP16), leading to a reduction of (-)-G-triggered JNK phosphorylation. Animal experiments showed that rosiglitazone could sensitize (-)-G to repress the growth of cancer cells with high level of Bcl-2 in vivo. Taken together, our results suggest that the PPARγ agonists may enhance the therapeutic effect of BH3 mimetics in cancers with high level of Bcl-2 through regulating the DUSP16/JNK/Mcl-1 singling pathway. This study may provide novel insights into the cancer therapeutics based on the combination of PPARγ agonists and BH3 mimetics.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Gossipol/farmacologia , Neoplasias/tratamento farmacológico , PPAR gama/agonistas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Rosiglitazona/farmacologia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Gossipol/uso terapêutico , Humanos , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos Nus , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos , Rosiglitazona/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA