Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 403: 123736, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32846263

RESUMO

While soil redox reactions are known to determine heavy metal soil availability, specific information on how iron (Fe) nanomaterials reduce heavy metal availability in bulk soil and in the rice rhizosphere is limited. Here a pot experiment was performed to examine the effect of phytogenic iron oxide nanoparticles (PION) on the availability of cadmium (Cd) in flooded soil. PION significantly reduced soil Cd availability, with Cd in rice shoot being 2.72, 1.21 and 0.40 mg kg-1 for the control, 1 and 5% PION treatments, respectively. In addition, following PION application, Illumina MiSeq sequencing indicated that the abundance of Lentimicrobium and Anaeromyxobacter increased, while the abundance of Geobacter and Thiobacillus decreased. Structural equation model analysis revealed that redox reactions, driven by carbon, nitrogen, iron and sulfur cycling related functional groups, played an important role in the immobilization of Cd in flooded soil. Co-occurrence network analysis showed that the rhizosphere soil was far more complex than the bulk soil. Overall, PION addition enhanced the inherent soil microbe's activity and the involved in reducing Cd availability to rice by converting mobile Cd into stabler forms. This initial result paves the way for establishing a practical low-cost remediation strategy for Cd contaminated paddy soils.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Nanopartículas Magnéticas de Óxido de Ferro , Oxirredução , Solo , Poluentes do Solo/análise
2.
J Hazard Mater ; 379: 120832, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31276925

RESUMO

Despite numerous studies having been conducted on the stabilization of heavy metal contaminated soil, our understanding of the mechanisms involved remains limited. Here green synthesized iron oxide nanoparticles (GION) were applied to stabilize cadmium (Cd) in a contaminated soil. GION not only stabilized soil Cd, but also improved soil properties within one year of incubation. After GION application both the exchangeable and carbonate bound Cd fractions decreased by 14.2-83.5% and 18.3-85.8% respectively, and most of the Cd was translocated to the residual Cd fraction. The application of GION also strongly altered soil bacterial communities. In GION treatments, the abundance of Gemmatimonadetes, Proteobacteria, and Saccharibacteria increased which led to a shift in the dominant bacterial genera from Bacillus to Candidatus koribacter. The variation in bacteria confirmed the restoration of the contaminated soil. The most abundant bacterial genus and species found in GION treatments were related to (i) plant derived biomass decomposition; (ii) ammoxidation and denitrification; and (iii) Fe oxidation. GION application may enhance the formation of larger soil aggregates with anaerobic centers and coprecipitation coupled Fe (II) oxidization, ammoxidation and nitrite reduction followed by Fe mineral ripening may be involved in Cd stabilization. The predominant stabilization mechanism was thus coprecipitation-ripening-stabilization.


Assuntos
Cádmio/análise , Compostos Férricos/química , Nanopartículas/química , Extratos Vegetais/química , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Euphorbiaceae/química , Firmicutes/isolamento & purificação , Química Verde , Microbiota , Folhas de Planta/química , Proteobactérias/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA