Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 10(2): 240-255, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38278954

RESUMO

We present chromosome-level genome assemblies from representative species of three independently evolved seagrass lineages: Posidonia oceanica, Cymodocea nodosa, Thalassia testudinum and Zostera marina. We also include a draft genome of Potamogeton acutifolius, belonging to a freshwater sister lineage to Zosteraceae. All seagrass species share an ancient whole-genome triplication, while additional whole-genome duplications were uncovered for C. nodosa, Z. marina and P. acutifolius. Comparative analysis of selected gene families suggests that the transition from submerged-freshwater to submerged-marine environments mainly involved fine-tuning of multiple processes (such as osmoregulation, salinity, light capture, carbon acquisition and temperature) that all had to happen in parallel, probably explaining why adaptation to a marine lifestyle has been exceedingly rare. Major gene losses related to stomata, volatiles, defence and lignification are probably a consequence of the return to the sea rather than the cause of it. These new genomes will accelerate functional studies and solutions, as continuing losses of the 'savannahs of the sea' are of major concern in times of climate change and loss of biodiversity.


Assuntos
Alismatales , Zosteraceae , Alismatales/genética , Zosteraceae/genética , Ecossistema
2.
Ecotoxicol Environ Saf ; 270: 115808, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38198896

RESUMO

Despite various plans to rationalize antibiotic use, antibiotic resistance in environmental bacteria is increasing due to the accumulation of antibiotic residues in the environment. This study aimed to test the ability of basidiomycete fungal strains to biotransform the antibiotic levofloxacin, a widely-used third-generation broad-spectrum fluoroquinolone, and to propose enzyme targets potentially involved in this biotransformation. The biotransformation process was performed using fungal strains. Levofloxacin biotransformation reached 100% after 9 days of culture with Porostereum spadiceum BS34. Using genomics and proteomics analyses coupled with activity tests, we showed that P. spadiceum produces several heme-peroxidases together with H2O2-producing enzymes that could be involved in the antibiotic biotransformation process. Using UV and high-resolution mass spectrometry, we were able to detect five levofloxacin degradation products. Their putative identity based on their MS2 fragmentation patterns led to the conclusion that the piperazine moiety was the main target of oxidative modification of levofloxacin by P. spadiceum, leading to a decrease in antibiotic activity.


Assuntos
Peróxido de Hidrogênio , Levofloxacino , Polyporales , Antibacterianos/química , Fluoroquinolonas/química , Fungos/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(10): e2214076120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848567

RESUMO

Lentinula is a broadly distributed group of fungi that contains the cultivated shiitake mushroom, L. edodes. We sequenced 24 genomes representing eight described species and several unnamed lineages of Lentinula from 15 countries on four continents. Lentinula comprises four major clades that arose in the Oligocene, three in the Americas and one in Asia-Australasia. To expand sampling of shiitake mushrooms, we assembled 60 genomes of L. edodes from China that were previously published as raw Illumina reads and added them to our dataset. Lentinula edodes sensu lato (s. lat.) contains three lineages that may warrant recognition as species, one including a single isolate from Nepal that is the sister group to the rest of L. edodes s. lat., a second with 20 cultivars and 12 wild isolates from China, Japan, Korea, and the Russian Far East, and a third with 28 wild isolates from China, Thailand, and Vietnam. Two additional lineages in China have arisen by hybridization among the second and third groups. Genes encoding cysteine sulfoxide lyase (lecsl) and γ-glutamyl transpeptidase (leggt), which are implicated in biosynthesis of the organosulfur flavor compound lenthionine, have diversified in Lentinula. Paralogs of both genes that are unique to Lentinula (lecsl 3 and leggt 5b) are coordinately up-regulated in fruiting bodies of L. edodes. The pangenome of L. edodes s. lat. contains 20,308 groups of orthologous genes, but only 6,438 orthogroups (32%) are shared among all strains, whereas 3,444 orthogroups (17%) are found only in wild populations, which should be targeted for conservation.


Assuntos
Lentinula , Filogenia , Ásia Oriental , Tailândia
4.
Mol Biol Evol ; 38(4): 1428-1446, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33211093

RESUMO

As actors of global carbon cycle, Agaricomycetes (Basidiomycota) have developed complex enzymatic machineries that allow them to decompose all plant polymers, including lignin. Among them, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles. Comparative analysis of 52 Agaricomycetes genomes (14 of them sequenced de novo) reveals that Agaricales possess a large diversity of hydrolytic and oxidative enzymes for lignocellulose decay. Based on the gene families with the predicted highest evolutionary rates-namely cellulose-binding CBM1, glycoside hydrolase GH43, lytic polysaccharide monooxygenase AA9, class-II peroxidases, glucose-methanol-choline oxidase/dehydrogenases, laccases, and unspecific peroxygenases-we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. The changes in the enzymatic toolkit of ancestral Agaricales are correlated with the evolution of their ability to grow not only on wood but also on leaf litter and decayed wood, with grass-litter decomposers as the most recent eco-physiological group. In this context, the above families were analyzed in detail in connection with lifestyle diversity. Peroxidases appear as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes, consistent with their essential role in lignin degradation and high evolutionary rates. This includes not only expansions/losses in peroxidase genes common to other basidiomycetes but also the widespread presence in Agaricales (and Russulales) of new peroxidases types not found in wood-rotting Polyporales, and other Agaricomycetes orders. Therefore, we analyzed the peroxidase evolution in Agaricomycetes by ancestral-sequence reconstruction revealing several major evolutionary pathways and mapped the appearance of the different enzyme types in a time-calibrated species tree.


Assuntos
Agaricales/genética , Genoma Fúngico , Lignina/metabolismo , Peroxidases/genética , Filogenia , Agaricales/enzimologia , Ecossistema , Família Multigênica , Peroxidases/metabolismo
5.
Mol Med Rep ; 14(6): 5551-5555, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27878275

RESUMO

Vascular development is a regulated process and is dependent on the participation and differentiation of many cell types including the proliferation and migration of vascular endothelial cells and differentiation of endothelial progenitor cells (EPCs) to mesodermal precursor cells. Thus, reconstitution of this process in vitro necessitates providing ambient conditions for generating and culturing EPCs in vitro and differentiating them to vascular endothelial cells. In the present study, we developed methods to differentiate bone marrow mesenchymal stem cells (MSC) into EPCs and to vascular endothelial cells. Bone marrow MSC from canines and human sources were differentiated in vitro in to EPCs. These EPCs were able to express a variety of endothelial markers following 7 days in culture. Further culturing led to the appearance of an increased number and proportion of endothelial cells. These cells were stable even after 30 generations in culture. There was a gradual loss of CD31 and increased expression of factor VIII, VEGFR and CD133. VEGF being highly angiogenic, helps in the vascular development. These results provide the basis for the possible development of vasculature in vitro conditions for biomedical applications and in vivo for organ/tissue reconstruction therapies.


Assuntos
Diferenciação Celular , Células Endoteliais/citologia , Células Progenitoras Endoteliais/citologia , Células-Tronco Mesenquimais/citologia , Idoso , Animais , Biomarcadores , Técnicas de Cultura de Células , Proliferação de Células , Células Cultivadas , Cães , Células Endoteliais/metabolismo , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/ultraestrutura , Feminino , Humanos , Imunofenotipagem , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Fenótipo
6.
Mol Cell Biol ; 34(2): 148-57, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24190973

RESUMO

AMP-activated protein kinase (AMPK) has been shown to activate p53 in response to metabolic stress. However, the underlying mechanisms remain unclear. Here we show that metabolic stresses induce AMPK-mediated phosphorylation of human MDMX on Ser342 in vitro and in cells, leading to enhanced association between MDMX and 14-3-3. This markedly inhibits p53 ubiquitylation and significantly stabilizes and activates p53. By striking contrast, no phosphorylation of MDM2 by AMPK was noted. AMPK-mediated MDMX phosphorylation, MDMX-14-3-3 binding, and p53 activation were drastically reduced in mouse embryo fibroblasts harboring endogenous MDMX with S341A (mouse homologue of human serine 342), S367A, and S402A (mouse homologue of human serine 403) mutations. Moreover, deficiency of AMPK prevented MDMX-14-3-3 interaction and p53 activation. The activation of p53 through AMPK-mediated MDMX phosphorylation and inactivation was further confirmed by using cell and animal model systems with two AMPK activators, metformin and salicylate (the active form of aspirin). Together, the results unveil a mechanism by which metabolic stresses activate AMPK, which, in turn, phosphorylates and inactivates MDMX, resulting in p53 stabilization and activation.


Assuntos
Adenilato Quinase/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular , Técnicas de Inativação de Genes , Células HCT116 , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Estresse Fisiológico
7.
J Biol Chem ; 287(25): 20898-903, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22556425

RESUMO

It has been known that p53 can be induced and activated by hypoxia, an abnormal condition that often occurs in rapidly growing solid tumors or when normal tissues undergo ischemia. Although the ATR-Chk1 kinase cascade was associated with hypoxia-induced p53 activation, molecules that directly link this hypoxia-ATR-Chk1 pathway to p53 activation have been elusive. Here, we showed that hypoxia could induce phosphorylation of MDMX at Ser-367 and enhance the binding of this phosphorylated MDMX to 14-3-3γ, consequently leading to p53 activation. A Chk1 inhibitor or knockdown of ATR and Chk1 inhibited the phosphorylation of MDMX at Ser-367 and impaired the binding of MDMX to 14-3-3γ in addition to p53 activation in response to hypoxia. In primary mouse embryonic fibroblast cells that harbor a mutant MDMX, including the S367A mutation, hypoxia also failed to induce the binding of this mutant MDMX to 14-3-3γ and to activate p53 and its direct targets. These results demonstrate that hypoxia can activate p53 through inactivation of MDMX by the ATR-Chk1-MDMX-14-3-3γ pathway.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas 14-3-3/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Mutação , Proteínas Nucleares/genética , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/genética
8.
Int J Gynecol Cancer ; 21(6): 1097-104, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21792014

RESUMO

OBJECTIVE: YY1 is a zinc finger transcription factor involved in the regulation of cell growth, development, and differentiation. Although YY1 can regulate human papillomavirus-type (HPV) viral oncogenes E6 and E7, it remains unknown if YY1 plays a key role in carcinoma progression of HPV-infected cells. Here we sought to determine whether YY1 is upregulated in the cervical cancer tissues and YY1 inhibition contributes to apoptosis of cervical cancer cells, which is at least partly p53 dependent. Therefore, YY1 can be a potential therapeutic target for cervical cancer treatment by arsenic trioxide (As2O3). MATERIALS AND METHODS: The expression level of YY1 was examined and analyzed by Western blot in pathologically confirmed primary cervical cancer samples, in the adjacent normal samples, as well as in normal cervix samples. The effects of YY1 inhibition by specific small interfering RNA in HeLa cells were determined by Western blot analysis of p53 level, cell growth curve, colony formation assay, and apoptosis. The contribution of YY1 to As2O3-induced p53 activation and apoptosis was also examined by Western blot and cell cycle analysis. RESULTS: Here we report that the expression level of YY1 is significantly elevated in the primary cancer tissues. In HPV-positive HeLa cells, small interfering RNA-mediated YY1 inhibition induced apoptosis and increased the expression of p53. Treatment of HeLa cells with As2O3, a known anti-cervical cancer agent, reduced both protein and mRNA levels of YY1 in HeLa cells. YY1 knockdown significantly further enhanced As2O3-induced apoptosis. CONCLUSIONS: These results demonstrated that the expression of YY1 is upregulated in cervical carcinomas and that YY1 plays a critical role in the progression of HPV-positive cervical cancer. In addition, YY1 inhibition induces p53 activation and apoptosis in HPV-infected HeLa cells. Thus, YY1 is an As2O3 target and could serve as a potential drug sensitizer for anti-cervical cancer therapy.


Assuntos
Papillomavirus Humano 16 , Infecções por Papillomavirus/metabolismo , Neoplasias do Colo do Útero/metabolismo , Fator de Transcrição YY1/metabolismo , Antineoplásicos/administração & dosagem , Apoptose , Trióxido de Arsênio , Arsenicais/administração & dosagem , Primers do DNA , Feminino , Células HeLa , Humanos , Óxidos/administração & dosagem , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/patologia , Reação em Cadeia da Polimerase , RNA Mensageiro/análise , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia
9.
Mol Biol Rep ; 38(1): 229-36, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20333547

RESUMO

MDM2, Pirh2 and COP1 are important E3 ubiquitin ligases, which directly interact with p53 and target p53 for proteasome-mediated degradation. MDMX, the MDM2 homologous protein, inhibits p53-mediated transcription activity. The interplay between MDM2, MDMX, Pirh2 and COP1 has not been reported, except the interaction between MDM2 and MDMX. Here, we reported that there were interactions between these four proteins independently of p53. The protein levels of MDM2, MDMX, Pirh2 and COP1 changed when any two of them were co-transfected. Our data also showed that the integrity of MDM2 RING finger domain was crucial for its ability to elevate the protein levels of COP1 and Pirh2. Any two of these four proteins could inhibit p53-mediated transcriptional activity synergistically. Furthermore, COP1 inhibited MDM2 self-ubiquitination and interfered with MDMX ubiquitination by MDM2. Our results suggest that MDM2, MDMX, Pirh2 and COP1 might inhibit p53 activity synergistically in vivo.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Humanos , Luciferases/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Domínios RING Finger , Transcrição Gênica , Transfecção , Ubiquitina-Proteína Ligases/química , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA