Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 588: 216797, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38462032

RESUMO

Induction of pyroptosis is proposed as a promising strategy for the treatment of hematological malignancies, but little is known. In the present study, we find clioquinol (CLQ), an anti-parasitic drug, induces striking myeloma and leukemia cell pyroptosis on a drug screen. RNA sequencing reveals that the interferon-inducible genes IFIT1 and IFIT3 are markedly upregulated and are essential for CLQ-induced GSDME activation and cell pyroptosis. Specifically, IFIT1 and IFIT3 form a complex with BAX and N-GSDME therefore directing N-GSDME translocalization to mitochondria and increasing mitochondrial membrane permeabilization and triggering pyroptosis. Furthermore, venetoclax, an activator of BAX and an inhibitor of Bcl-2, displays strikingly synergistic effects with CLQ against leukemia and myeloma via pyroptosis. This study thus reveals a novel mechanism for mitochondrial GSDME in pyroptosis and it also illustrates that induction of IFIT1/T3 and inhibition of Bcl-2 orchestrate the treatment of leukemia and myeloma via pyroptosis.


Assuntos
Leucemia , Mieloma Múltiplo , Humanos , Piroptose , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteína X Associada a bcl-2/metabolismo , Mitocôndrias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Leucemia/metabolismo , Caspase 3/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
ACS Pharmacol Transl Sci ; 7(1): 176-185, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38230274

RESUMO

The oncogenic transcription factor c-Maf has been proposed as an ideal therapeutic target for multiple myeloma (MM), a not-yet-curable malignancy of plasma cells. In the present study, we establish a c-Maf-based luciferase screen system and apply it to screen a homemade library composed of natural products from which bruceine B (BB) is identified to display potent antimyeloma activity. BB is a key ingredient isolated from the Chinese traditional medicinal plant Brucea javanica (L.) Merr. (Simaroubaceae). BB inhibits MM cell proliferation and induces MM cell apoptosis in a caspase-3-dependent manner. The mechanism studies showed that BB inhibits c-Maf transcriptional activity and downregulates the expression of CCND2 and ITGB7, the downstream genes typically modulated by c-Maf. Moreover, BB induces c-Maf degradation via proteasomes by inducing c-Maf for K48-linked polyubiquitination in association with downregulated Otub1 and USP5, two proven deubiquitinases of c-Maf. We also found that c-Maf activates STAT3 and BB suppresses the STAT3 signaling. In the in vivo study, BB displays potent antimyeloma activity and almost suppresses the growth of myeloma xenografts in 7 days but shows no overt toxicity to mice. In conclusion, this study identifies BB as a novel inhibitor of c-Maf by promoting its degradation via the ubiquitin-proteasomal pathway. Given the safety and the successful clinical application of bruceine products in traditional medicine, BB is ensured for further investigation for the treatment of patients with MM.

3.
Acta Pharmacol Sin ; 44(7): 1464-1474, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36807412

RESUMO

Proteasomes are overexpressed in multiple myeloma (MM) and proteasomal inhibitors (PIs) have been widely used for the treatment of MM. PIs are reported to induce MM cell apoptosis but impair necroptosis. In the present study, we found that PIs MG132 and bortezomib induce MM cell pyroptosis, a novel type of cell death, in a GSDME-dependent manner. Lack of GSDME totally blocks PI-induced pyroptosis. Interestingly, we found that Caspase-3/6/7/9 are all involved in pyroptosis triggered by PIs because the specific inhibitor of each caspase ablates GSDME activation. PIs markedly reduce mitochondrial membrane potential. Moreover, PIs disrupt the interaction of Bcl-2 and BAX, induce cytochrome c release from mitochondria to cytosol and activate GSDME. Furthermore, we found that overexpression of an N-terminal portion of GSDME suffices to release cytochrome c from mitochondria and to activate Caspase-3/9, suggesting N-GSDME might penetrate the mitochondrial membrane. Consistent with Bcl-2 inhibition, BAX can induce MM cell pyroptosis in a GSDME-dependent manner. In accordance with these findings, inhibition of Bcl-2 synergizes with PIs to induce MM cell pyroptosis. Therefore, the present study indicates that PIs trigger MM cell pyroptosis via the mitochondrial BAX/GSDME pathway and provides a rationale for combined treatment of MM with Bcl-2 and proteasome inhibitors to increase therapeutic efficiency via induction of pyroptosis.


Assuntos
Mieloma Múltiplo , Piroptose , Humanos , Piroptose/fisiologia , Inibidores de Proteassoma/farmacologia , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Citocromos c/metabolismo
4.
Cancer Lett ; 543: 215791, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35700821

RESUMO

Multiple myeloma (MM) is a hematologic malignancy derived from clonal expansion of plasma cells within the bone marrow and it may progress to the extramedullary region in late stage of the disease course. c-Maf, an oncogenic zipper leucine transcription factor, is overexpressed in more than 50% MM cell lines and primary species in association with chromosomal translocation, aberrant signaling transduction and modulation of stability. By triggering the transcription of critical genes including CCND2, ITGB7, CCR1, ARK5, c-Maf promotes MM progress, proliferation, survival and chemoresistance. Notably, c-Maf is usually expressed at the embryonic stage to promote cell differentiation but less expressed in healthy adult cells. c-Maf has long been proposed as a promising therapeutic target of MM and a panel of small molecule compounds have been identified to downregulate c-Maf and display potent anti-myeloma activities. In the current article, we take a concise summary on the advances in c-Maf biology, pathophysiology, and targeted drug discovery in the potential treatment of MM.


Assuntos
Mieloma Múltiplo , Medula Óssea/patologia , Carcinogênese/metabolismo , Humanos , Fator de Transcrição MafF/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Plasmócitos
5.
J Int Med Res ; 46(6): 2346-2358, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29614905

RESUMO

Objective This study was performed to confirm the anti-inflammatory effect of the Mongolian drug Naru-3 on traumatic spinal cord injury (TSCI) and its possible mechanism of action. Methods We prepared a TSCI model using Sprague-Dawley rats. The rats were divided into a Naru-3 group and a methylprednisolone group. Real-time polymerase chain reaction and western blotting were performed to measure the expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß. Enzyme-linked immunosorbent assay kits were employed to detect serum inflammatory cytokine levels. The localization and expression of monocyte chemotactic protein-1 (MCP-1) in spinal cord tissue was determined by immunohistochemical analysis. Flow cytometry was performed to analyze the ratio of M1- and M2-phenotype macrophages. The locomotor function recovery was evaluated by the Basso, Beattie, and Bresnahan score. Results Naru-3 significantly inhibited the inflammatory response and reduced the expression of TNF-α, IL-6, and IL-1ß in both spinal cord and blood in a time- and concentration-dependent manner. Immunohistochemical analysis indicated that Naru-3 significantly reduced MCP-1 expression in spinal cord and promoted M2-phenotype macrophage differentiation. Conclusions Naru-3 is an effective treatment for impact-induced TSCI in rats. Naru-3 treatment affects inflammatory cytokine levels and macrophage differentiation, which play a role in TSCI remission.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal/efeitos dos fármacos , Animais , Citocinas/biossíntese , Citocinas/sangue , Modelos Animais de Doenças , Macrófagos/efeitos dos fármacos , Medicina Tradicional Chinesa , Metilprednisolona/administração & dosagem , Metilprednisolona/farmacologia , Metilprednisolona/uso terapêutico , Ratos , Ratos Sprague-Dawley , Medula Espinal/imunologia , Traumatismos da Medula Espinal/sangue , Traumatismos da Medula Espinal/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA