Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol ; 38(7): 1484-1493, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36929861

RESUMO

Triphenyl phosphate (TPHP) is one of the most widely used organic phosphorus flame retardants and is ubiquitous in the environment. Studies have been reported that TPHP may lead to obesity, neurotoxicity and reproductive toxicity, but its impact on the immune system is almost blank. The present study was aimed to investigate the potential immunotoxicity of TPHP on macrophages and its underlying mechanism. The results demonstrated for the first time that TPHP (12.5, 25, and 50 µM)-induced F4/80+ CD11c+ phenotype of RAW 264.7 macrophages, accompanied by increased mRNA levels of inflammatory mediators, antigen-presenting genes (Cd80, Cd86, and H2-Aa), and significantly enhanced the phagocytosis of macrophage. Meanwhile, TPHP increased the expression of Toll-like receptor 4 (TLR4), and its co-receptor CD14, leading to significant activation of the downstream ERK/NF-κB pathway. However, co-exposure of cells to TAK-242, a TLR4 inhibitor, suppressed TPHP-induced F4/80+ CD11c+ phenotype, and down-regulated inflammatory mediators and antigen-presentation related genes, via blocked the TLR4/ERK/NF-κB pathway. Taken together, our results suggested that TPHP could induce macrophage dysfunction through activating TLR4-mediated ERK/NF-κB signaling pathway, and it may be the potential reason for health-threatening consequences.


Assuntos
NF-kappa B , Receptor 4 Toll-Like , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Macrófagos , Mediadores da Inflamação/metabolismo
2.
BMC Cancer ; 22(1): 1068, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243694

RESUMO

BACKGROUND: Tumor necrosis factor alpha-induced protein 2 (TNFAIP2), a TNFα-inducible gene, appears to participate in inflammation, immune response, hematopoiesis, and carcinogenesis. However, the potential role of TNFAIP2 in the development of acute myeloid leukemia (AML) remains unknow yet. Therefore, we aimed to study the biological role of TNFAIP2 in leukemogenesis. METHODS: TNFAIP2 mRNA level, prognostic value, co-expressed genes, differentially expressed genes, DNA methylation, and functional enrichment analysis in AML patients were explored via multiple public databases, including UALCAN, GTEx portal, Timer 2.0, LinkedOmics, SMART, MethSurv, Metascape, GSEA and String databases. Data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Beat AML database were used to determine the associations between TNFAIP2 expression and various clinical or genetic parameters of AML patients. Moreover, the biological functions of TNFAIP2 in AML were investigated through in vitro experiments. RESULTS: By large-scale data mining, our study indicated that TNFAIP2 was differentially expressed across different normal and tumor tissues. TNFAIP2 expression was significantly increased in AML, particularly in French-American-British (FAB) classification M4/M5 patients, compared with corresponding control tissues. Overexpression of TNFAIP2 was an independent poor prognostic factor of overall survival (OS) and was associated with unfavorable cytogenetic risk and gene mutations in AML patients. DNA hypermethylation of TNFAIP2 at gene body linked to upregulation of TNFAIP2 and inferior OS in AML. Functional enrichment analysis indicated immunomodulation function and inflammation response of TNFAIP2 in leukemogenesis. Finally, the suppression of TNFAIP resulted in inhibition of proliferation by altering cell-cycle progression and increase of cell death by promoting early and late apoptosis in THP-1 and U937AML cells. CONCLUSION: Collectively, the oncogenic TNFAIP2 can function as a novel biomarker and prognostic factor in AML patients. The immunoregulation function of TNFAIP2 warrants further validation in AML.


Assuntos
Leucemia Mieloide Aguda , Fator de Necrose Tumoral alfa , Biomarcadores Tumorais/genética , Carcinogênese , Citocinas , DNA , Humanos , Inflamação , Leucemia Mieloide Aguda/patologia , Prognóstico , RNA Mensageiro/genética
3.
Stem Cells Int ; 2022: 6430565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463812

RESUMO

Mesenchymal stem cells (MSCs) have emerged as putative therapeutic tools due to their intrinsic tumor tropism, and anti-tumor and immunoregulatory properties. The limited passage and self-differentiation abilities of MSCs in vitro hinder preclinical studies on them. In this study, we focused on the safety of immortalized mesenchymal stem cells (im-MSCs) and, for the first time, studied the feasibility of im-MSCs as candidates for the treatment of glioma. The im-MSCs were constructed by lentiviral transfection of genes. The proliferative capacity of im-MSCs and the proliferative phenotype of MSCs and MSCs co-cultured with glioma cells (U87) were measured using CCK-8 or EdU assays. After long-term culture, karyotyping of im-MSCs was conducted. The tumorigenicity of engineered MSCs was evaluated using soft agar cloning assays. Next, the engineered cells were injected into the brain of female BALB/c nude mice. Finally, the cell membranes of im-MSCs were labeled with DiO or DiR to detect their ability to be taken up by glioma cells and target in situ gliomas using the IVIS system. Engineered cells retained the immunophenotype of MSC; im-MSCs maintained the ability to differentiate into mesenchymal lineages in vitro; and im-MSCs showed stronger proliferative capacity than unengineered MSCs but without colony formation in soft agar, no tumorigenicity in the brain, and normal chromosomes. MSCs or im-MSCs co-cultured with U87 cells showed enhanced proliferation ability, but did not show malignant characteristics in vitro. Immortalized cells continued to express homing molecules. The cell membranes of im-MSCs were taken up by glioma cells and targeted in situ gliomas in vivo, suggesting that im-MSCs and their plasma membranes can be used as natural drug carriers for targeting gliomas, and providing a safe, adequate, quality-controlled, and continuous source for the treatment of gliomas based on whole-cell or cell membrane carriers.

4.
Ecotoxicol Environ Saf ; 231: 113201, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35051757

RESUMO

Obesity is one of the risk factors of metabolic diseases. Decreased sensitivity to insulin or impairment of the insulin signaling pathway may affect the metabolism of adipose tissue. Bisphenol F (BPF) has been widely used in various products as a substitute for bisphenol A (BPA). BPA has been defined as "obesogen". However, knowledge about the correlation between BPF and obesity is very limited. This study was aimed to explore the effects of BPF on glucose metabolism and insulin sensitivity in mammalian tissues, using a mouse 3T3-L1 adipocyte line as the model. Differentiated 3T3-L1 adipocytes were treated with BPF at various concentrations for 24 h or 48 h, followed by the measurement of cell viability, lipid accumulation, expression levels of adipocytokines, glucose consumption, and impairment of the insulin signaling pathway. The results indicated that BPF had no effect on the size of 3T3-L1 adipocytes, but the expression of leptin, adiponectin and apelin was decreased, while that of chemerin and resistin was increased after 48 h of BPF treatment. Moreover, BPF inhibited the glucose consumption, the expression of GLUT4, and its translocation to the plasma membranes in 3T3-L1 adipocytes. Western blot analysis indicated that the activation of IRS-1/PI3K/AKT signaling pathway was inhibited by BPF, which resulted in reduced GLUT4 translocation. In conclusion, our data suggest that exposure of adipocytes to BPF may alter the expression of calorie metabolism-related adipokines and suppress insulin-stimulated glucose metabolism by impairing the insulin signaling (IRS-1/PI3K/AKT) pathway.


Assuntos
Glucose , Insulina , Adipócitos , Animais , Compostos Benzidrílicos , Fenóis , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética
5.
Nano Lett ; 21(3): 1484-1492, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33475372

RESUMO

Existing nanoparticle-mediated drug delivery systems for glioma systemic chemotherapy remain a great challenge due to poor delivery efficiency resulting from the blood brain barrier/blood-(brain tumor) barrier (BBB/BBTB) and insufficient tumor penetration. Here, we demonstrate a distinct design by patching doxorubicin-loaded heparin-based nanoparticles (DNs) onto the surface of natural grapefruit extracellular vesicles (EVs), to fabricate biomimetic EV-DNs, achieving efficient drug delivery and thus significantly enhancing antiglioma efficacy. The patching strategy allows the unprecedented 4-fold drug loading capacity compared to traditional encapsulation for EVs. The biomimetic EV-DNs are enabled to bypass BBB/BBTB and penetrate into glioma tissues by receptor-mediated transcytosis and membrane fusion, greatly promoting cellular internalization and antiproliferation ability as well as extending circulation time. We demonstrate that a high-abundance accumulation of EV-DNs can be detected at glioma tissues, enabling the maximal brain tumor uptake of EV-DNs and great antiglioma efficacy in vivo.


Assuntos
Neoplasias Encefálicas , Citrus paradisi , Vesículas Extracelulares , Glioma , Nanopartículas , Biomimética , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Heparina , Humanos
6.
ACS Appl Mater Interfaces ; 12(47): 52354-52369, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33196179

RESUMO

Gliomas-devastating intracranial tumors with a dismal outcome-are in dire need of innovative treatment. Although nanodrugs have been utilized as a target therapy for certain types of solid tumors, their therapeutic effects in gliomas are limited due to the complications of the systemic circulation, blood-brain barrier (BBB), and specific glioma environment. Thus, we aimed to establish a nanoliposome adaptable to different environments by codelivery of shCD163 and doxorubicin (DOX) to treat gliomas. In this study, we first synthesized pH-sensitive DSPE-cRGD-Hz-PEG2000 to form an environmentally self-adaptative nanoliposome (cRGD-DDD Lip) via a thin film method. We used in vitro BBB models, in vitro cell uptake experiments, and in vivo biodistribution assays to confirm the long circulation time and low cell uptake of the cRGD-DDD Lip as a result of the poly(ethylene glycol) (PEG) shell of cRGD-DDD Lip in the neutral pH systemic circulation. Moreover, the cRGD-DDD Lip bypassed the BBB and attached to the intracranial glioma following the removal of the PEG shell and the exposure of cRGD to the weakly acidic tumor microenvironment. We further assembled the shCD163/DOX@cRGD-DDD Lip through cRGD-DDD Lip loading of shCD163 and DOX. In vitro, cell proliferation and self-renewal of glioma cells were inhibited by the shCD163/DOX@cRGD-DDD Lip due to the toxicity of DOX and the suppression of shCD163 via the CD163 pathway. In vivo, the shCD163/DOX@cRGD-DDD Lip disturbed the progression of in situ gliomas by inhibiting the growth and stemness of glioma cells and prevented the recurrence of gliomas after resection. In conclusion, the cRGD-DDD Lip may be a promising nanodrug-loading platform to cope with different environments and the shCD163/DOX@cRGD-DDD Lip may potentially be a novel nanodrug for glioma therapy.


Assuntos
Antibióticos Antineoplásicos/química , Doxorrubicina/química , Nanopartículas/química , RNA Interferente Pequeno/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Glioma/tratamento farmacológico , Glioma/mortalidade , Glioma/patologia , Humanos , Lipossomos/química , Camundongos , Camundongos Nus , Nanopartículas/metabolismo , Oligopeptídeos/química , Polietilenoglicóis/química , Interferência de RNA , RNA Interferente Pequeno/química , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Taxa de Sobrevida , Distribuição Tecidual
7.
ACS Appl Mater Interfaces ; 12(20): 22673-22686, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32337980

RESUMO

Cellular internalization, delivery efficiency, and therapeutic efficacy of nanoparticles vary according to the microenvironmental complexity for tumor types. Adjusting their physicochemical properties, such as surface properties and size, has significant potential for dealing with such complexities. Herein, we prepare four types of pH-sensitive doxorubicin nanoparticles (DOX-D1, DOX-D2, DOX-W1, and DOX-W2 Nano) using simply changing reaction medium or reactant ratio. DOX-D1 and DOX-D2 Nano exhibit similar surface characteristics (surface coating and targeting ligand content) and different size, while both DOX-W Nano examples present similar surface characteristics and size. And they can re-self-assemble into smaller particles in blood-mimic conditions and the order of size is as follows: DOX-D1> DOX-D2 ≈ DOX-W Nano, and DOX-W Nano has a higher targeting ligand content than DOX-D Nano. Thus, the bioactivities in vitro and tumor microenvironment responses of DOX-D1, DOX-D2, and DOX-W1 are further investigated due to their different physicochemical properties. DOX-W1 Nano exhibits a higher cellular uptake, a stronger antiproliferation than DOX-D1 and DOX-D2 Nano attributed to its smaller size, and a higher targeting moiety content. Despite the similar sizes of DOX-W1 and DOX-D2, DOX-D2 Nano shows a greater in vitro blood-brain barrier (BBB) permeability related to its surface coating. Interestingly, DOX-D1 with suitable size and surface property can efficiently bypass the BBB and deliver to an intracranial glioma; in comparison DOX-W1 Nano has excellent targeting efficiency in subcutaneous tumors (glioma and breast cancer). Accordingly, DOX-D1 Nano is preferential for the treatment of intracranial glioma while DOX-W1 Nano exhibits potent killing ability for subcutaneous tumors. Our work suggests tailoring multiple physicochemical properties of nanoparticles can play a significant role in addressing tumor microenvironment complexity.


Assuntos
Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Feminino , Heparina/química , Humanos , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos BALB C , Neoplasias/patologia , Tamanho da Partícula , Peptídeos Cíclicos/química , Polietilenoglicóis/química , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Front Oncol ; 10: 170, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32154171

RESUMO

Background: Glioma is the most common malignant tumor of the central nervous system, and often displays invasive growth. Recently, circular RNA (circRNA), which is a novel non-coding type of RNA, has been shown to play a vital role in glioma tumorigenesis. However, the functions and mechanism of lipocalin-2 (Lcn2)-derived circular RNA (hsa_circ_0088732) in glioma progression remain unclear. Methods: We evaluated hsa_circ_0088732 expression by fluorescence in situ hybridization (FISH), Sanger sequencing, and PCR assays. Cell apoptosis was evaluated by flow cytometry and Hoechst 33258 staining. Transwell migration and invasion assays were performed to measure cell metastasis and viability. In addition, the target miRNA of hsa_circ_0088732 and the target gene of miR-661 were predicted by a bioinformatics analysis, and the interactions were verified by dual-luciferase reporter assays. RAB3D expression was analyzed by an immunochemistry assay, and E-cadherin, N-cadherin, and vimentin protein expression were examined by western blot assays. A mouse xenograft model was developed and used to analyze the effects of hsa_circ_0088732 on glioma growth in vivo. Results: We verified that hsa_circ_0088732 is circular and highly expressed in glioma tissues. Knockdown of hsa_circ_0088732 induced glioma cell apoptosis and inhibited glioma cell migration, invasion, and epithelial-mesenchymal transition (EMT). We found that hsa_circ_0088732 negatively regulated miR-661 by targeting miR-661, and RAB3D was a target gene of miR-661. In addition, inhibition of miR-661 promoted glioma cell metastasis and suppressed cell apoptosis. Knockdown of RAB3D induced cell apoptosis and suppressed cell metastasis. Moreover, hsa_circ_0088732 accelerated glioma progression through its effects on the miR-661/RAB3D axis. Finally, results from a mouse xenograft model confirmed that knockdown of hsa_circ_0088732 induced miR-661 expression, resulting in suppression of RAB3D expression and inhibition of tumor growth in vivo. Conclusion: We demonstrated that hsa_circ_0088732 facilitated glioma progression by sponging miR-661 to increase RAB3D expression. This study provides a theoretical basis for understanding the development and occurrence of glioma, as well as for the development of targeted drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA