Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1327164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379541

RESUMO

Amomum villosum Lour. (A. villosum), known as Sharen in China, is widely used for culinary and medicinal purposes due to containing a diverse set of bioactive compounds. In this study, the optimum ethanol extraction process was optimized and the composition and biological activities (antioxidant and antitumor) of five different fractions (dichloromethane, petroleum ether, ethyl acetate, n-butanol and H2O) extracted from the ethanol extract of A. villosum were investigated. The results showed that the optimal extraction conditions were extraction temperature 80°C, extraction time 120 min, ethanol concentration 40% and solid-liquid ratio 1:25 g/mL. Moreover, 35 bioactive compounds were successfully identified by UPLC-ESI-QTOF-MS/MS from five factions for the first time, including 12 phenolic acids and derivatives, 2 organic acids, 12 flavonoids and derivatives, 2 oxylipins and 7 proanthocyanidins. Among them, ethyl acetate fraction (Fr-EtOAc) exhibited the highest content of total phenolic (374.01 mg GAE/g DW) and flavonoid (93.11 mg RE/g DW), where vanillic acid, catechin, epicatechin and protocatechuic acid were the predominant phenolic compounds that accounting for 81.65% of the quantified bioactive compounds. In addition, Fr-EtOAc demonstrated excellent total antioxidant activity (IC50 of DPPH and ABTS assays were 0.23, 0.08 mg/mL, respectively, and FRAP assay was 322.91 mg VCE/100 g DW) and antitumor activity (1,000 µg/mL, 79.04% inhibition rate). The results could provide guidance for the industrial production and application of A. villosum.

2.
Parasit Vectors ; 16(1): 330, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726789

RESUMO

BACKGROUND: Eimeria tenella is an obligate intracellular parasitic protozoan that invades the chicken cecum and causes coccidiosis, which induces acute lesions and weight loss. Elucidating the anticoccidial mechanism of action of green tea polyphenols could aid the development of anticoccidial drugs and resolve the problem of drug resistance in E. tenella. METHODS: We constructed a model of E. tenella infection in Wuliangshan black-boned chickens, an indigenous breed of Yunnan Province, China, to study the efficacy of green tea polyphenols against the infection. Alterations in gene expression and in the microbial flora in the cecum were analyzed by ribonucleic acid (RNA) sequencing and 16S ribosomal RNA (rRNA) sequencing. Quantitative real-time polymerase chain reaction was used to verify the host gene expression data obtained by RNA sequencing. Network pharmacology and molecular docking were used to clarify the interactions between the component green tea polyphenols and the targeted proteins; potential anticoccidial herbs were also analyzed. RESULTS: Treatment with the green tea polyphenols led to a reduction in the lesion score and weight loss of the chickens induced by E. tenella infection. The expression of matrix metalloproteinase 7 (MMP7), MMP1, nitric oxide synthase 2 and ephrin type-A receptor 2 was significantly altered in the E. tenella infection plus green tea polyphenol-treated group and in the E. tenella infection group compared with the control group; these genes were also predicted targets of tea polyphenols. Furthermore, the tea polyphenol (-)-epigallocatechin gallate acted on most of the targets, and the molecular docking analysis showed that it has good affinity with interferon induced with helicase C domain 1 protein. 16S ribosomal RNA sequencing showed that the green tea polyphenols had a regulatory effect on changes in the fecal microbiota induced by E. tenella infection. In total, 171 herbs were predicted to act on two or three targets in MMP7, MMP1, nitric oxide synthase 2 and ephrin type-A receptor 2. CONCLUSIONS: Green tea polyphenols can directly or indirectly regulate host gene expression and alter the growth of microbiota. The results presented here shed light on the mechanism of action of green tea polyphenols against E. tenella infection in chickens, and have implications for the development of novel anticoccidial products.


Assuntos
Produtos Biológicos , Eimeria tenella , Animais , Transcriptoma , Galinhas , RNA Ribossômico 16S/genética , Eimeria tenella/genética , Metaloproteinase 1 da Matriz , Metaloproteinase 7 da Matriz , Simulação de Acoplamento Molecular , Farmacologia em Rede , China , Antioxidantes , Óxido Nítrico Sintase , Efrinas
3.
Infect Dis Poverty ; 12(1): 68, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491273

RESUMO

BACKGROUND: Felids are the only definitive hosts of Toxoplasma gondii. However, the biological features of the feline small intestine following T. gondii infection are poorly understood. We investigated the changes in the expression of RNAs (including mRNAs, long non-coding RNAs and circular RNAs) in the small intestinal epithelia of cats following T. gondii infection to improve our understanding of the life cycle of T. gondii and cat responses to T. gondii infection. METHODS: Fifteen cats were randomly assigned to five groups, and the infection groups were inoculated with 600 tissue cysts of the T. gondii Pru strain by gavage. The small intestinal epithelia of cats were collected at 6, 10, 14, and 30 days post infection (DPI). Using high-throughput RNA sequencing (RNA-seq), we investigated the changes in RNA expression. The expression levels of differentially expressed (DE) genes and non-coding RNAs (ncRNAs) identified by RNA-seq were validated by quantitative reverse transcription PCR (qRT-PCR). Differential expression was determined using the DESeq R package. RESULTS: In total, 207 annotated lncRNAs, 20,552 novel lncRNAs, 3342 novel circRNAs and 19,409 mRNAs were identified. Among these, 70 to 344 DE mRNAs, lncRNAs and circRNAs were detected, and the post-cleavage binding sites between 725 ncRNAs and 2082 miRNAs were predicted. Using the co-location method, we predicted that a total of 235 lncRNAs target 1044 protein-coding genes, while the results of co-expression analysis revealed that 174 lncRNAs target 2097 mRNAs. Pathway enrichment analyses of the genes targeted by ncRNAs suggested that most ncRNAs were significantly enriched in immune or diseases-related pathways. NcRNA regulatory networks revealed that a single ncRNA could be directly or indirectly regulated by multiple genes or ncRNAs that could influence the immune response of cats. Co-expression analysis showed that 242 circRNAs, mainly involved in immune responses, were significantly associated with T. gondii infection. In contrast, 1352 protein coding RNAs, mainly involved in nucleic acid process/repair pathways or oocyte development pathways, were negatively associated with T. gondii infection. CONCLUSIONS: This study is the first to reveal the expression profiles of circRNAs, lncRNAs and mRNAs in the cat small intestine following T. gondii infection and will facilitate the elucidation of the role of ncRNAs in the pathogenesis of T. gondii infection in its definitive host, thereby facilitating the development of novel intervention strategies against T. gondii infection in humans and animals.


Assuntos
RNA Longo não Codificante , Toxoplasma , Toxoplasmose , Animais , Gatos , Perfilação da Expressão Gênica , RNA Circular/genética , RNA Longo não Codificante/genética , Toxoplasma/genética
4.
Infect Dis Poverty ; 11(1): 96, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104766

RESUMO

BACKGROUND: Toxoplasma gondii is a protozoan parasite which can infect almost all warm-blooded animals and humans. Understanding the differential expression of proteins and transcripts associated with T. gondii infection in its definitive host (cat) may improve our knowledge of how the parasite manipulates the molecular microenvironment of its definitive host. The aim of this study was to explore the global proteomic alterations in the major organs of cats during acute T. gondii infection. METHODS: iTRAQ-based quantitative proteomic profiling was performed on six organs (brain, liver, lung, spleen, heart and small intestine) of cats on day 7 post-infection by cysts of T. gondii PRU strain (Genotype II). Mascot software was used to conduct the student's t-test. Proteins with P values < 0.05 and fold change > 1.2 or < 0.83 were considered as differentially expressed proteins (DEPs). RESULTS: A total of 32,657 proteins were identified in the six organs, including 2556 DEPs; of which 1325 were up-regulated and 1231 were down-regulated. The brain, liver, lung, spleen, heart and small intestine exhibited 125 DEPs, 463 DEPs, 255 DEPs, 283 DEPs, 855 DEPs and 575 DEPs, respectively. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of all proteins and DEPs in all organs showed that many proteins were enriched in binding, cell part, cell growth and death, signal transduction, translation, sorting and degradation, extracellular matrix remodeling, tryptophan catabolism, and immune system. Correlations between differentially expressed proteins and transcripts were detected in the liver (n = 19), small intestine (n = 17), heart (n = 9), lung (n = 9) and spleen (n = 3). CONCLUSIONS: The present study identified 2556 DEPs in six cat tissues on day 7 after infection by T. gondii PRU strain, and functional enrichment analyses showed that these DEPs were associated with various cellular and metabolic processes. These findings provide a solid base for further in-depth investigation of the complex proteotranscriptomic reprogramming that mediates the dynamic interplays between T. gondii and the different feline tissues.


Assuntos
Proteoma , Animais , Animais Domésticos , Doenças do Gato/genética , Gatos , Proteoma/análise , Proteômica , Toxoplasma , Toxoplasmose Animal/genética , Transcriptoma
5.
Vet Parasitol ; 309: 109764, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35870221

RESUMO

Toxoplasma gondii (T. gondii) is a zoonotic intracellular protozoan parasite that can invade, replicate and survive in almost all cells of warm-blooded animals. T. gondii infection threatens the life of the fetus or can cause morbidity in the infant. As the only definitive host of T. gondii, felids spread the pathogen mainly by forming oocysts in the small intestines and discharging the oocysts into the ambient environment, consequently polluting water, vegetables, and meat products. In this study, we used untargeted metabolomics technology to study the changes in metabolites that occurred during the early stage of oocyst formation in the cat small intestine following T. gondii infection and attempted to identify metabolic biomarkers that could potentially be used as diagnostic molecular markers in the future. Domestic cats (Felis catus) were infected with T. gondii Pru tissue cysts, and samples of their small intestinal epithelium were collected at 2 and 4 days post-infection (DPI) for metabolic analysis. LC-MS/MS and multivariate statistical analysis were employed to detect metabolomic signatures that discriminated between the infected and control groups. A total of 1673 ions and 1201 ions were obtained in the positive and negative modes, respectively. Of these ions, 175 were up-regulated and 127 were down-regulated in the positive ion mode; whereas, 123 were up-regulated and 81 were down-regulated in the negative ion mode. Three commonly altered ions (0.74_313.0414 m/z, 8.82_615.2621 m/z and 8.16_325.2362 m/z) were determined to have potential research value. Seventy common metabolic pathways were enriched at two time points, with arginine biosynthesis, pyrimidine metabolism, pantothenate and CoA biosynthesis being the three most significant pathways related to T. gondii. The area under the curve (AUC) of differential metabolites combined with relevant literature analysis showed that N-Methylpelletierine and 3,3-Difluoro-17-methyl-5alpha-androstan-17beta-ol have higher predictability and better potential application value than other metabolites. Our analysis of metabolic markers during the early stage of T. gondii oocyst formation in the small intestine of the definitive host (cat) provided novel insight for understanding oocyst development and a theoretical basis for the application of potential biomarkers.


Assuntos
Doenças do Gato , Toxoplasma , Toxoplasmose Animal , Animais , Animais Domésticos , Biomarcadores , Doenças do Gato/diagnóstico , Gatos , Cromatografia Líquida/veterinária , Fezes/parasitologia , Humanos , Intestino Delgado , Metabolômica , Oocistos , Espectrometria de Massas em Tandem/veterinária , Toxoplasmose Animal/diagnóstico , Toxoplasmose Animal/parasitologia
6.
J Immunother Cancer ; 9(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34725213

RESUMO

BACKGROUND: In this study, we hypothesize that the ability of the protozoan Toxoplasma gondii to modulate immune response within the tumor might improve the therapeutic effect of immune checkpoint blockade. We examined the synergetic therapeutic activity of attenuated T. gondii RH ΔGRA17 strain and programmed death ligand-1 (PD-L1) treatment on both targeted and distal tumors in mice. METHODS: The effects of administration of T. gondii RH ΔGRA17 strain on the tumor volume and survival rate of mice bearing flank B16-F10, MC38, or LLC tumors were studied. We characterized the effects of ΔGRA17 on tumor biomarkers' expression, PD-L1 expression, immune cells infiltrating the tumors, and expression of immune-related genes by using immunohistochemistry, immunofluorescence, flow cytometry, NanoString platform, and real-time quantitative PCR, respectively. The role of immune cells in the efficacy of ΔGRA17 plus PD-L1 blockade therapy was determined via depletion of immune cell subtypes. RESULTS: Treatment with T. gondii ΔGRA17 tachyzoites and anti-PD-L1 therapy significantly extended the survival of mice and suppressed tumor growth in preclinical mouse models of melanoma, Lewis lung carcinoma, and colon adenocarcinoma. Attenuation of the tumor growth was detected in the injected and distant tumors, which was associated with upregulation of innate and adaptive immune pathways. Complete regression of tumors was underpinned by late interferon-gamma-producing CD8+ cytotoxic T cells. CONCLUSION: The results from these models indicate that intratumoral injection of ΔGRA17 induced a systemic effect, improved mouse immune response, and sensitized immunologically 'cold' tumors and rendered them sensitive to immune checkpoint blockade therapy.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Toxoplasma/metabolismo , Animais , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Camundongos Knockout
7.
Front Oncol ; 11: 706798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307175

RESUMO

The NUP214-ABL1 fusion gene is a constitutively active tyrosine kinase that can be detected in 6% of T-cell acute lymphoblastic leukemia (T-ALL) patients, and it can also be found in B-cell acute lymphoblastic leukaemia (B-ALL). However the NUP214-ABL1 fusion in acute myeloid leukemia (AML) has not yet been reported. Up to now, the sensitivity of NUP214-ABL1-positive patients to tyrosine kinase inhibitor (TKI) is still controversial. Here we report the first case of an AML patient carrying NUP214-ABL1 fusion gene. The conventional AML chemotherapy regimen for the patient was successful. Identification of additional AML patients with NUP214-ABL1 fusion gene will provide treatment experience and prognostic evaluation.

8.
PLoS Negl Trop Dis ; 14(12): e0008951, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33332355

RESUMO

The excretory-secretory products released by the liver fluke Fasciola gigantica (FgESPs) play important roles in regulating the host immune response during the infection. Identification of hepatic miRNAs altered by FgESPs may improve our understanding of the pathogenesis of F. gigantica infection. In this study, we investigated the alterations in the hepatic microRNAs (miRNAs) in mice treated with FgESPs using high-throughput small RNA (sRNA) sequencing and bioinformatics analysis. The expression of seven miRNAs was confirmed by quantitative stem-loop reverse transcription quantitative PCR (qRT-PCR). A total of 1,313 miRNAs were identified in the liver of mice, and the differentially expressed (DE) miRNAs varied across the time lapsed post exposure to FgESPs. We identified 67, 154 and 53 dysregulated miRNAs at 1, 4 and 12 weeks post-exposure, respectively. 5 miRNAs (miR-126a-3p, miR-150-5p, miR-155-5p, miR-181a-5p and miR-362-3p) were commonly dysregulated at the three time points. We also found that most of the DE miRNAs were induced by FgESPs in the mouse liver after 4 weeks of exposure. These were subjected to Gene Ontology (GO) enrichment analysis, which showed that the predicted targets of the hepatic DE miRNAs of mice 4 weeks of FgESPs injection were enriched in GO terms, including cell membrane, ion binding, cellular communication, organelle and DNA damage. KEGG analysis indicated that the predicted targets of the most downregulated miRNAs were involved in 15 neural activity-related pathways, 6 digestion-related pathways, 20 immune response-related pathways and 17 cancer-related pathways. These data provide new insights into how FgESPs can dysregulate hepatic miRNAs, which play important roles in modulating several aspects of F. gigantica pathogenesis.


Assuntos
Biologia Computacional , Fasciola/genética , Fasciolíase/parasitologia , MicroRNAs/genética , Animais , Regulação para Baixo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Imunidade , Fígado/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
9.
Int J Med Microbiol ; 310(5): 151432, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32654774

RESUMO

The extracellular signal-regulated kinases (ERKs) serve as important determinants of cellular signal transduction pathways, and hence may play important roles during infections. Previous work suggested that putative ERK7 of Toxoplasma gondii is required for efficient intracellular replication of the parasite. However, the antigenic and immunostimulatory properties of TgERK7 protein remain unknown. The objective of this study was to produce a recombinant TgERK7 protein in vitro and to evaluate its effect on the induction of humoral and T cell-mediated immune responses against T. gondii infection in BALB/c mice. Immunization using TgERK7 mixed with Freund's adjuvants significantly increased the ratio of CD3e+CD4+ T/CD3e+CD8a+ T lymphocytes in spleen and elevated serum cytokines (IFN-γ, IL-2, IL-4, IL-10, IL-12p70, IL-23, MCP-1, and TNF-α) in immunized mice compared to control mice. On the contrary, immunization did not induce high levels of serum IgG antibodies. Five predicted peptides of TgERK7 were synthesized and conjugated with KLH and used to analyze the antibody specificity in the sera of immunized mice. We detected a progressive increase in the antibody level only against TgERK7 peptide A (DEVDKHVLRKYD). Antibody raised against this peptide significantly decreased intracellular proliferation of T. gondii in vitro, suggesting that peptide A can potentially induce a protective antibody response. We also showed that immunization improved the survival rate of mice challenged with a virulent strain and significantly reduced the parasite cyst burden within the brains of chronically infected mice. Our data show that TgERK7-based immunization induced TgERK7 peptide A-specific immune responses that can impart protective immunity against T. gondii infection. The therapeutic potential of targeting ERK7 signaling pathway for future toxoplasmosis treatment is warranted.


Assuntos
Antígenos de Protozoários/imunologia , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Citocinas/sangue , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Imunidade Celular , Imunidade Humoral , Imunização , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/química , Peptídeos/genética , Conformação Proteica , Vacinas Protozoárias/imunologia , Coelhos , Proteínas Recombinantes/imunologia , Toxoplasma/genética
10.
J Immunol ; 204(6): 1562-1570, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31996457

RESUMO

In this study, we generated a tkl1 deletion mutant in the Toxoplasma gondii type 1 RH (RHΔtkl1) strain and tested the protective efficacies of vaccination using RHΔtkl1 tachyzoites against acute, chronic, and congenital T. gondii infections in Kunming mice. Mice vaccinated with RHΔtkl1 mounted a strong humoral and cellular response as shown by elevated levels of anti-T. gondii-specific IgG, IL-2, IL-12, IFN-γ, and IL-10. All RHΔtkl1-vaccinated mice survived a lethal challenge with 1 × 103 tachyzoites of type 1 RH or ToxoDB#9 (PYS or TgC7) strain as well as 100 cysts or oocysts of Prugniuad strain. All mock-vaccinated plus infected mice have died. Vaccination also protected against cyst- or oocyst-caused chronic infection, reduced vertical transmission caused by oocysts, increased litter size, and maintained body weight of pups born to dams challenged with 10 oocysts on day 5 of gestation. In contrast, all mock-vaccinated plus oocysts-infected dams had aborted, and no fetus has survived. Vaccinated dams remained healthy postinfection, and their brain cyst burden was significantly reduced compared with mock-vaccinated dams infected with oocysts. In vivo depletion of CD4+ T cells, CD8+ T cells, and B cells revealed that CD8+ T cells are involved in the protection of mice against T. gondii infection. Additionally, adoptive transfer of CD8+ T cells from RHΔtkl1-vaccinated mice significantly enhanced the survival of naive mice infected with the pathogenic strain. Together, these data reaffirm the importance of CD8+ T cell responses in future vaccine design for toxoplasmosis and present T. gondii tkl1 gene as a promising vaccine candidate.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas Protozoárias/administração & dosagem , Toxoplasma/imunologia , Toxoplasmose Animal/prevenção & controle , Toxoplasmose Congênita/prevenção & controle , Doença Aguda/terapia , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/transplante , Doença Crônica/prevenção & controle , Modelos Animais de Doenças , Feminino , Genes de Protozoários/genética , Genes de Protozoários/imunologia , Humanos , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Gado/parasitologia , Masculino , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/genética , Vacinas Protozoárias/imunologia , Deleção de Sequência , Toxoplasma/genética , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/transmissão , Toxoplasmose Congênita/imunologia , Toxoplasmose Congênita/parasitologia , Toxoplasmose Congênita/transmissão , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/imunologia
11.
Trends Parasitol ; 35(3): 239-253, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30718083

RESUMO

Important progress has been made in understanding how immunity is elicited against Toxoplasma gondii - a complex pathogen with multiple mechanisms of immune evasion. Many vaccine candidates have been tested using various strategies in animal models. However, none of these strategies has delivered as yet, and important challenges remain in the development of vaccines that can eliminate the tissue cysts and/or fully block vertical transmission. In this review, we provide an overview of the current understanding of the host immune response to T. gondii infection and summarize the key limitations for the development of an effective, safe, and durable toxoplasmosis vaccine. We also discuss how the successes and failures in developing and testing vaccine candidates have provided a roadmap for future vaccine development.


Assuntos
Vacinas Protozoárias , Pesquisa/tendências , Toxoplasmose/imunologia , Toxoplasmose/prevenção & controle , Animais , Humanos , Toxoplasma/imunologia
12.
Parasitol Res ; 118(3): 783-792, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30675671

RESUMO

Toxoplasma gondii secretes a group of rhoptry-secreted kinases (ROPs), which play significant roles in promoting intracellular infection. T. gondii rhoptry organelle protein 17 (ROP17) is one of these important effector proteins. However, its role in modulating host cell response during infection remains poorly understood. Here, we reveal that ROP17 (genotype I) induces significant changes in the expression genes and transcription factors of host cells. HEK293T cells were transfected with PCMV-N-HA-ROP17 plasmid or empty control PCMV-N-HA plasmid. Transcriptomic analysis revealed 3138 differentially expressed genes (DEGs) in PCMV-N-HA-ROP17-transfected HEK293T cells, including 1456 upregulated, 1682 downregulated DEGs. Also, 715 of the DEGs were transcription factors (TFs), including 423 downregulated TFs and 292 upregulated TFs. Most differentially expressed TFs, whether belong to signal transduction, cancer-related pathways or immune-related pathways, were downregulated in ROP17-expressing cells. ROP17 also decreased alternative splicing events in host cells, presumably via alteration of the expression of genes involved in the alternative splicing pathway. Taken together, our findings suggest a novel strategy whereby T. gondii ROP17 manipulates various cellular processes, including immune response through reprogramming host gene expression to promote its own colonization and survival in the infected host cells.


Assuntos
Imunidade Inata , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Toxoplasma/imunologia , Toxoplasmose/parasitologia , Fatores de Virulência/metabolismo , Animais , Regulação para Baixo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Organelas/metabolismo , Proteínas de Protozoários/genética , Toxoplasma/fisiologia , Regulação para Cima , Fatores de Virulência/genética
13.
Parasit Vectors ; 11(1): 592, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30428922

RESUMO

BACKGROUND: Although sexual reproduction of the parasite Toxoplasma gondii exclusively occurs in the cat intestine, knowledge about the alteration of gene expression in the intestine of cats infected with T. gondii is still limited. Here, we investigated the temporal transcriptional changes that occur in the cat intestine during T. gondii infection. METHODS: Cats were infected with 100 T. gondii cysts and their intestines were collected at 6, 12, 18, 24, 72 and 96 hours post-infection (hpi). RNA sequencing (RNA-Seq) Illumina technology was used to gain insight into the spectrum of genes that are differentially expressed due to infection. Quantitative RT-PCR (qRT-PCR) was also used to validate the level of expression of a set of differentially expressed genes (DEGs) obtained by sequencing. RESULTS: Our transcriptome analysis revealed 2363 DEGs that were clustered into six unique patterns of gene expression across all the time points after infection. Our analysis revealed 56, 184, 404, 508, 400 and 811 DEGs in infected intestines compared to uninfected controls at 6, 12, 18, 24, 72 and 96 hpi, respectively. RNA-Seq results were confirmed by qRT-PCR. DEGs were mainly enriched in catalytic activity and metabolic process based on gene ontology enrichment analysis. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that transcriptional changes in the intestine of infected cats evolve over the course of infection, and the largest difference in the enriched pathways was observed at 96 hpi. The anti-T. gondii defense response of the feline host was mediated by Major Histocompatibility Complex class I, proteasomes, heat-shock proteins and fatty acid binding proteins. CONCLUSIONS: This study revealed novel host factors, which may be critical for the successful establishment of an intracellular niche during T. gondii infection in the definitive feline host.


Assuntos
Interações Hospedeiro-Patógeno/genética , Intestinos/parasitologia , Toxoplasma/genética , Transcriptoma , Animais , Animais Domésticos , Gatos , Feminino , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA/métodos , Toxoplasma/imunologia , Toxoplasma/isolamento & purificação
14.
Parasitol Res ; 117(9): 2785-2793, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29916065

RESUMO

Growth and replication of the protozoan parasite Toxoplasma gondii within host cell entail the production of several effector proteins, which the parasite exploits for counteracting the host's immune response. Despite considerable research to define the host signaling pathways manipulated by T. gondii and their effectors, there has been limited progress into understanding how individual members of the dense granule proteins (GRAs) modulate gene expression within host cells. The aim of this study was to evaluate whether T. gondii GRA15 protein plays any role in regulating host gene expression. Baby hamster kidney cells (BHK-21) were transfected with plasmids encoding GRA15 genes of either type I GT1 strain (GRA15I) or type II PRU strain (GRA15II). Gene expression patterns of transfected and nontransfected BHK-21 cells were investigated using RNA-sequencing analysis. GRA15I and GRA15II induced both known and novel transcriptional changes in the transfected BHK-21 cells compared with nontransfected cells. Pathway analysis revealed that GRA15II was mainly involved in the regulation of tumor necrosis factor (TNF), NF-κB, HTLV-I infection, and NOD-like receptor signaling pathways. GRA15I preferentially influenced the synthesis of unsaturated fatty acids in host cells. Our findings support the hypothesis that certain functions of GRA15 protein are strain dependent and that GRA15 modulates the expression of signaling pathways and genes with important roles in T. gondii pathophysiology. A greater understanding of host signaling pathways influenced by T. gondii effectors would allow the development of more efficient anti-T. gondii therapeutic schemes, capitalizing on disrupting parasite virulence factors to advance the treatment of toxoplasmosis.


Assuntos
Interações Hospedeiro-Parasita/genética , Biossíntese de Proteínas/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/patologia , Animais , Linhagem Celular , Cricetinae , Ácidos Graxos Insaturados/biossíntese , Regulação da Expressão Gênica , NF-kappa B/biossíntese , NF-kappa B/genética , Plasmídeos/genética , Transdução de Sinais/genética , Toxoplasmose/parasitologia , Fator de Transcrição RelA/biossíntese , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética , Fatores de Virulência/genética
15.
Front Microbiol ; 8: 1648, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28912762

RESUMO

Schistosoma japonicum (S. japonicum) is a worldwide spread pathogen which penetrates host skin and then induces several diseases in infected host, such as fibrosis, formation of granulomas, hepatocirrhosis, and hepatomegaly. In present study, for the first time, transcriptomic profiles of mouse livers and skins infected by fork-tailed S. japonicum cercaria or non-fork-tailed S. japonicum cercaria were analyzed by using RNA-seq. The present findings demonstrated that transcriptomic landscapes of livers and skins infected by fork-tailed S. japonicum cercaria or non-fork-tailed S. japonicum cercaria were different. S. japonicum has great influence on hepatic metabolic processes. Fork-tailed S. japonicum cercaria upregulated hepatic metabolic processes, while non-fork-tailed S. japonicum cercaria downregulated hepatic metabolic processes. For the metabolism process or the metabolism enzyme expressional change, the pharmacokinetics of host could be changed during S. japonicum infection, regardless the biotypes of S. japonicum cercariae. The changes of infected skins focused on upregulation of immune response. During the S. japonicum skin infection period, fork-tailed S. japonicum cercaria infection induced stronger immune response comparing with that immune response triggered by non-fork-tailed S. japonicum cercaria. The transcription factor enrichment analysis showed that Irf7, Stat1 and Stat2 could play important roles in gene regulation during fork-tailed S. japonicum cercaria infection.

16.
Oncotarget ; 8(15): 25599-25611, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28424428

RESUMO

Although microRNAs (miRNAs) play an important role in liver homeostasis, the extent to which they can be altered by Toxoplasma gondii infection is unknown. Here, we utilized small RNA sequencing and bioinformatic analyses to characterize miRNA expression profiles in the liver of domestic cats at 7 days after oral infection with T. gondii (Type II) strain. A total of 384 miRNAs were identified and 82 were differentially expressed, of which 33 were up-regulated and 49 down-regulated. Also, 5690 predicted host gene targets for the differentially expressed miRNAs were identified using the bioinformatic algorithm miRanda. Gene ontology analysis revealed that the predicted gene targets of the dysregulated miRNAs were significantly enriched in apoptosis. Kyoto Encyclopedia of Genes and Genomes analysis showed that the predicted gene targets were involved in several pathways, including acute myeloid leukemia, central carbon metabolism in cancer, choline metabolism in cancer, estrogen signaling pathway, fatty acid degradation, lysosome, nucleotide excision repair, progesterone-mediated oocyte maturation, and VEGF signaling pathway. The expression level of 6 upregulated miRNAs (mmu-miR-21a-5p, mmu-miR-20a-5p, mmu-miR-17-5p, mmu-miR-30e-3p, mmu-miR-142a-3p, and mmu-miR-106b-3p) was confirmed by stem-loop quantitative reverse transcription PCR, which yielded results consistent with the sequencing data. These findings expand our understanding of the regulatory mechanisms of miRNAs underlying T. gondii pathogenesis and contribute new database information on cat miRNAs, opening a new perspective on the prevention and treatment of T. gondii infection.


Assuntos
Perfilação da Expressão Gênica , Interações Hospedeiro-Parasita/genética , Fígado/metabolismo , Fígado/parasitologia , MicroRNAs/genética , Toxoplasmose Animal/genética , Toxoplasmose Animal/parasitologia , Transcriptoma , Animais , Animais Domésticos , Gatos , Biologia Computacional/métodos , Ontologia Genética , Interferência de RNA
17.
Infect Genet Evol ; 37: 137-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26569573

RESUMO

Toxoplasma gondii is a worldwide prevalent pathogen that infects most of the warm-blood vertebrates. To investigate the regulation network of splenic miRNAs altered by acute infection with T. gondii, we herein investigated the changes of miRNA profile in mouse spleen via next generation sequencing and bioinformatics analysis. A total of 379 miRNAs was identified, 131 miRNAs of them were differentially expressed (including 97 upregulated and 34 downregulated miRNAs). 48 differentially expressed miRNAs had validated targets in the miRWalk2.0 database. Gene Ontology (GO) enrichment analysis revealed that the validated targets of differently expressed miRNAs were significantly enriched in gene transcription regulation. It suggested that T. gondii can modulate host gene expression through targeting to trans-regulation factors. The genes involved in apoptosis or anti-apoptosis were both targeted by differentially expressed miRNAs. The change of power balance between the miRNAs targeting host apoptosis genes and those regulating host anti-apoptosis genes contributes to the fate of host apoptosis process. Twelve pathways were significantly enriched in KEGG analysis with most of them being cancer related, including pathways in cancer, pancreatic cancer, colorectal cancer, axon guidance, MAPK signaling pathway, focal adhesion, chronic myeloid leukemia, renal cell carcinoma, prostate cancer, glioma, regulation of actin cytoskeleton, and Wnt signaling pathway. Our study showed a changed miRNA regulation network in mouse spleen infected by T. gondii. These findings will be helpful for better understanding of miRNA regulation network in host-T. gondii interaction, revealing the relationship among T. gondii infection, gene regulation, apoptosis and cancer process alterations in infected spleen.


Assuntos
Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Baço/parasitologia , Toxoplasmose/genética , Animais , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Camundongos , Análise de Sequência de RNA/métodos
18.
Arch Virol ; 156(2): 203-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21053030

RESUMO

The predominant field strains of Marek's disease virus in Guangxi were clearly different from the vaccine strain CVI988/Rispens based on sequencing of the envelope glycoprotein I (gI), glycoprotein E (gE) and oncogenic meq genes. These differences may be partly responsible for the most recent outbreaks in Guangxi.


Assuntos
Mardivirus/genética , Doença de Marek/epidemiologia , Doença de Marek/virologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Substituição de Aminoácidos , Animais , Galinhas , China/epidemiologia , Surtos de Doenças/veterinária , Genes Virais , Mardivirus/imunologia , Mardivirus/isolamento & purificação , Vacinas contra Doença de Marek/genética , Epidemiologia Molecular , Proteínas Oncogênicas Virais/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Proteínas do Envelope Viral/genética
19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 18(6): 1617-20, 2010 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-21176382

RESUMO

This study was aimed to analyze the possibility of high resolution matching for human leukocyte antigen (HLA) loci in unrelated donor-recipient pair with low resolution match in HLA-A, -B, -DRB1 loci. Samples were genotyped for HLA-A, -B, -C, -DRB1 and -DQB1 by polymerase chain reaction sequence based typing (PCR-SBT). The results showed that the total number of patients and the donors were 166 and 274. 97 (58.43%) patients were matched for 1 donor and 47 (28.31%) patients were matched for 2 donors at low resolution level; among 274 donor-recipient pairs, HLA-A, -B, -C, -DRB1 and -DQB1 loci matching for 6/10, 7/10, 8/10, 9/10 and 10/10 were 32 (11.68%), 54 (19.71%), 62 (22.63%), 49 (17.88%) and 48 (17.52%) respectively; there were mismatch in HLA-A, -B, -C, -DRB1 and -DQB1 loci, and the most mismatch was in HLA-C locus. The number of alleles of HLA-A, -B, -C, -DRB1 and -DQB1 loci were 23, 46, 21, 30 and 17 respectively in the donors. The alleles number HLA-A, -B, -C, -DRB1 and -DQB1 loci were 20, 40, 22, 29 and 16 respectively in the patients; the haplotype number of HLA loci were 311 in the donors and 224 in the patients. The high frequency of haplotype was A*02:07-B*46:01-C*01:02-DRB1*09:01:02-DQB1*03:03 (5.63% and 6.88%). It is concluded that the probability of high resolution mismatch of HLA loci is high in unrelated donor-recipient pairs with low resolution match in HLA-A, -B, -DRB1 loci.


Assuntos
Antígenos HLA/imunologia , Teste de Histocompatibilidade/métodos , Alelos , Frequência do Gene , Genótipo , Antígenos HLA/genética , Antígenos HLA-A/genética , Antígenos HLA-A/imunologia , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Antígenos HLA-C/genética , Antígenos HLA-C/imunologia , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/imunologia , Cadeias beta de HLA-DQ , Antígenos HLA-DR/genética , Antígenos HLA-DR/imunologia , Cadeias HLA-DRB1 , Haplótipos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Probabilidade , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA