Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 30(6): e14692, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38872258

RESUMO

AIM: Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease characterized by progressive death of upper and lower motor neurons, leading to generalized muscle atrophy, paralysis, and even death. Mitochondrial damage and neuroinflammation play key roles in the pathogenesis of ALS. In the present study, the efficacy of A-1, a derivative of arctigenin with AMP-activated protein kinase (AMPK) and silent information regulator 1 (SIRT1) activation for ALS, was investigated. METHODS: A-1 at 33.3 mg/kg was administrated in SOD1G93A transgenic mice orally from the 13th week for a 6-week treatment period. Motor ability was assessed before terminal anesthesia. Muscle atrophy and fibrosis, motor neurons, astrocytes, and microglia in the spinal cord were evaluated by H&E, Masson, Sirius Red, Nissl, and immunohistochemistry staining. Protein expression was detected with proteomics analysis, Western blotting, and ELISA. Mitochondrial adenosine triphosphate (ATP) and malondialdehyde (MDA) levels were measured using an assay kit. RESULTS: A-1 administration in SOD1G93A mice enhanced mobility, decreased skeletal muscle atrophy and fibrosis, mitigated loss of spinal motor neurons, and reduced glial activation. Additionally, A-1 treatment improved mitochondrial function, evidenced by elevated ATP levels and increased expression of key mitochondrial-related proteins. The A-1 treatment group showed decreased levels of IL-1ß, pIκBα/IκBα, and pNF-κB/NF-κB. CONCLUSIONS: A-1 treatment reduced motor neuron loss, improved gastrocnemius atrophy, and delayed ALS progression through the AMPK/SIRT1/PGC-1α pathway, which promotes mitochondrial biogenesis. Furthermore, the AMPK/SIRT1/IL-1ß/NF-κB pathway exerted neuroprotective effects by reducing neuroinflammation. These findings suggest A-1 as a promising therapeutic approach for ALS.


Assuntos
Proteínas Quinases Ativadas por AMP , Esclerose Lateral Amiotrófica , Furanos , Interleucina-1beta , Camundongos Transgênicos , NF-kappa B , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Camundongos , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Furanos/farmacologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/metabolismo , Interleucina-1beta/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Lignanas/farmacologia , Lignanas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Masculino , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Neurônios Motores/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/metabolismo
2.
Toxicol Lett ; 387: 14-27, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717680

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that mainly affects the elder population, and its etiology is enigmatic. Both environmental risks and genetics may influence the development of PD. Excess copper causes neurotoxicity and accelerates the progression of neurodegenerative diseases. However, the underlying mechanisms of copper-induced neurotoxicity remain controversial. In this study, A53T transgenic α-synuclein (A53T) mice and their matching wild-type (WT) mice were treated with a low dose of copper (0.13 ppm copper chlorinated drinking water, equivalent to the copper exposure of human daily copper intake dose) for 4 months, and copper poisoning was performed on human A53T mutant SHSY5Y cells overexpressed with α-synuclein (dose of 1/4 IC50), to test the effects of copper exposure on the body. The results of the open field test showed that the moto function of Cu-treated mice was impaired. Proteomics revealed changes in neurodevelopment, transport function, and mitochondrial membrane-related function in Cu-treated WT mice, which were associated with reduced expression of mitochondrial complex (NDUFA10, ATP5A), dopamine neurons (TH), and dopamine transporter (DAT). Mitochondrial function, nervous system development, synaptic function, and immune response were altered in Cu-treated A53T mice. These changes were associated with increased mitochondrial splitting protein (Drp1), decreased mitochondrial fusion protein (OPA1, Mfn1), abnormalities in mitochondrial autophagy protein (LC3BII/I, P62), decreased dopamine neuron (TH) expression, increased α-synuclein expression, inflammatory factors (IL-6, IL-1ß, and TNF-α) release and microglia (Iba1) activation. In addition, we found that Cu2+ (30 µM) induced excessive ROS production and reduced mitochondrial ATP production in human A53T mutant α-synuclein overexpressing SHSY5Y cells by in vitro experiments. In conclusion, low-dose copper treatment altered critical proteins involved in mitochondrial, neurodevelopmental, and inflammatory responses and affected mitochondria's ROS and ATP production levels.


Assuntos
Cobre , Doença de Parkinson , alfa-Sinucleína , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , alfa-Sinucleína/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Camundongos Transgênicos , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de Doenças , Linhagem Celular , Humanos
3.
Int J Toxicol ; 41(3): 225-233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35341331

RESUMO

Hexavalent chromium [Cr(VI)] is a common industrial pollutant, and exposure may cause toxic effects in multiple organ systems and carcinogenesis, including lung cancer. However, the toxic effect of Cr(VI) on the respiratory system is poorly understood. In the present study, it was demonstrated that Cr(VI) exposure significantly decreased the viability of human bronchial epithelial cells (16-HBE) in a dose-dependent manner. Flow cytometry demonstrated that Cr(VI) enhanced the transition of 16-HBE cells from G1 to S phase and arrested S-phase progression. Reverse transcription-quantitative polymerase chain reaction analysis revealed a significant alteration in the expression of apoptosis-associated genes in Cr(VI)-treated 16-HBE cells. In addition, using two-dimensional fluorescence differential gel electrophoresis with mass spectrometry, 15 differentially expressed proteins (1 upregulated and 14 downregulated) were identified in 16-HBE cells with Cr(VI) treatment compared with controls. Functional classification revealed that these differentially expressed proteins were involved in apoptosis, cytoskeletal structure, and energy metabolism. In conclusion, these data suggested that Cr(VI) caused toxic effects in bronchial epithelial cells and the mechanisms may involve the abnormal expression of apoptosis-associated proteins, cytoskeletal proteins, and energy metabolism-associated proteins.


Assuntos
Cromo , Proteômica , Carcinogênese , Cromo/toxicidade , Células Epiteliais , Humanos
4.
Ecotoxicol Environ Saf ; 224: 112706, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34461317

RESUMO

BACKGROUND: Active smoking and exposure to environmental tobacco smoke may be related to cognitive function decline. We assessed the associations of urinary levels of nicotine and its metabolites with cognitive function. METHODS: A total of 553 elder adults at high risk of cognitive impairment and 2212 gender- and age-matched individuals at low risk of cognitive impairment were selected at a ratio of 1: 4 from the remained individuals (n = 6771) who completed the baseline survey of the Shenzhen Ageing-Related Disorder Cohort, after excluding those with either Alzheimer's disease, Parkinson's syndrome or stroke as well as those with missing data on variables (including active and passive smoking status, Mini-Cog score). Urinary levels of nicotine and its metabolites and cognitive function for all individuals were measured by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) and assessed using the Mini-Cog test, respectively. Associations of urinary levels of nicotine and its metabolites with cognitive function were analyzed by conditional logistic regression models. RESULTS: Individuals in the highest tertile of urinary OHCotGluc (OR: 1.52, 95%CI: 1.19-1.93) or NNO (OR: 1.50, 95%CI: 1.16-1.93) levels as well as in the second tertile of urinary ∑Nic level (OR: 1.43, 95%CI: 1.13-1.82) were at higher risk of cognitive impairment compared with those in the corresponding lowest tertile. Restricted cubic spline models revealed the non-linear dose-response relationships between urinary levels of OHCotGluc, NNO or ∑Nic and the risk of cognitive impairment. CONCLUSIONS: Urinary levels of OHCotGluc, NNO or ∑Nic exhibited a non-linear dose-response relationship with cognitive function in the urban elderly.

5.
Neurochem Res ; 46(12): 3135-3148, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34398408

RESUMO

Depression is the most common psychiatric disorder associated with brain and immune system abnormalities. In recent years, xanthohumol (Xn) a bioactive prenylated flavonoid has received ample attention for its polypharmacological effects, therefore, here we aimed to explore the protective effects of Xn against the LPS-induced depressive-like symptoms mediated by inflammation and oxidative stress. We tested the effect of Xn against LPS-induced behavioural changes in mice by means of forced swimming test (FST), tail suspention test (TST), sucrose preference test (SPT) and open field test (OPT). Examined the neuroinflammation and oxido-nitrosative stress (O&NS) markers and analyze Nrf2 and NF-κB signalling pathways in the hippocampus. Our results indicated that peripheral repeated administration of lipopolysaccharides (LPS) (1 mg/kg, intra peritoneally) induced depressive-like behavior, neuroinflammation and O&NS in mice. Pretreatment with Xn (10 and 20 mg/kg, intra gastrically) reverse the behavioural impairments prophylactically as obvious in the FST and TST without effecting locomotion, however only 20 mg dose improve anhedonic behavior as observed in SPT. Similarly, Xn pretreatment in dose-dependent manner prevented the LPS induced neuro-inflammation and O&NS. Immunofluorescence analysis showed that Xn reduced activated gliosis via attenuation of Iba-1 and GFAP in hippocampus. In addition, Xn considerably reduced the expression of phospho-NF-κB and cleaved caspase-3 while enhanced Nrf2 and HO-1 expression in the hippocampus. To the best of our knowledge, this is the first study to examine the underlying beneficial prophylactic effects of the Xn in neuroinflammation and O&NS mediating depressive-like behaviors.


Assuntos
Comportamento Animal/efeitos dos fármacos , Transtorno Depressivo/tratamento farmacológico , Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Propiofenonas/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Citocinas , Transtorno Depressivo/induzido quimicamente , Transtorno Depressivo/metabolismo , Transtorno Depressivo/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/genética , Estresse Oxidativo , Transdução de Sinais
6.
BMJ Open ; 10(6): e034317, 2020 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-32565452

RESUMO

PURPOSE: The Shenzhen ageing-related disorder cohort was designed to detect the associations of lifestyle, environmental and genetic factors with major ageing-related disorders, especially neurological and mental disorders. PARTICIPANTS: The cohort was a community-dwelling prospective study of 9411 elderly adults aged 60 to 92 years from 51 community health service centres in Luohu district of Shenzhen, China. The baseline data were collected between 2017 and 2018, including demographics and socioeconomics, lifestyles, medical history, family history of major non-communicable chronic disease, environmental exposures, clinical analysis of blood and urine, clinical imaging measurements, anthropometric measures and neurological function and mental health assessments. Blood and urinary samples were collected at baseline. All participants will be followed for physiological and psychological disorders and updated lifestyle and environmental exposures every 5 years. FINDINGS TO DATE: The mean age of the participants was 67.73 years at baseline, and 42.74% were males. The prevalences of individuals with unhealthy conditions were as follows: overweight/obesity (54.38%), hypertension (58.24%), diabetes mellitus (22.30%), dyslipidaemia (75.69%), chronic bronchitis (1.45%), myocardial infarction (0.55%), coronary heart disease (5.69%), stroke (1.10%), cancer (2.18%), arthritis (5.04%), Alzheimer's disease (0.18%), Parkinson's disease (0.23%), brain injury (5.75%), cognitive impairment (5.39%) and depression status (3.28%). The mean scores for the Lawton-Brody Activities of Daily Living Scale and the Social Support Rate Scale were 14.15 and 39.54, respectively. FUTURE PLANS: 2000 new entrants from Luohu district will be recruited every year until 2028. The data collection is expected to be ended at the end of 2030. The data will be used to assess the causality of ageing-related disorders, especially neurological and mental disorders through integrating environmental, genetic and lifestyle factors. The data sets generated and/or analysed during the current study are not publicly available at this stage, but are available from the corresponding author on reasonable request.


Assuntos
Envelhecimento , Doenças não Transmissíveis/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/epidemiologia , Artrite/epidemiologia , Lesões Encefálicas/epidemiologia , China/epidemiologia , Disfunção Cognitiva/epidemiologia , Estudos de Coortes , Depressão/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Sobrepeso/epidemiologia , Doença de Parkinson/epidemiologia
7.
Proteomics Clin Appl ; 14(4): e1900094, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32080978

RESUMO

PURPOSE: Depression is a major disabling psychiatric disorder which causes severe financial burden and social consequences worldwide. Recently, (2R, 6R)-hydroxynorketamine (HNK), a metabolite of ketamine, showed strong antidepressant effect through N-methyl-D-aspartate (NMDA) antagonizing independent mechanism. In the current study the goal is to identify the potential intracellular molecules and pathways that might be involved in different therapeutic effects underlying HNK as compared to NMDA antagonist MK-801. EXPERIMENTAL DESIGN: Forced-swim behavioral test, 2D fluorescence difference gel electrophoresis, and MALDI-TOF-MS/MS proteomics are used. RESULTS: Compared to saline group, 14 differential proteins are identified in MK-801 treated group, with six proteins significantly up-regulated, while in HNK treated group 18 distinct proteins are identified with 11 proteins significantly up-regulated. Likewise, two proteins are significantly upregulated in HNK treated group when compared to MK-801 treated group. Among these differentially expressed proteins, phosphoglycerate mutase 1, malate dehydrogenase/ cytoplasmic, and triosephosphate isomerase are co-affected by MK-801 and HNK treatment. Representative protein expression changes are quantified by western blot, showing consistent results as determined by MALDI-TOF-MS/MS. CONCLUSION AND CLINICAL RELEVANCE: The core protection mechanisms of HNK observed herein involves improving the abnormal ATP synthesis, impaired glycolysis, and the defense system therefore provides mechanistic insight and molecular targets for novel antidepressants.


Assuntos
Antidepressivos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Ketamina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Biologia Computacional , Ontologia Genética , Glicólise , Ketamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteômica , Espectrometria de Massas em Tandem
8.
Food Chem Toxicol ; 130: 242-252, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31136779

RESUMO

Limited literature available indicates the neurotoxic effects of excessive iron, however, a deep understanding of iron neurotoxicity needs to be developed. In this study, we evaluated the toxic effects of excessive iron on learning and cognitive function in long-term iron exposure (oral, 10 mg/L, 6 months) of mice by behavioral tests including novel object recognition test, step-down passive avoidance test and Morris water maze test, and further analyzed differential expression of hippocampal proteins. The behavioral tests consistently showed that iron treatment caused cognitive defects of the mice. Proteomic analysis revealed 66 differentially expressed hippocampal proteins (30 increased and 36 decreased) in iron-treated mice as compared with the control ones. Bioinformatics analysis showed that the dysregulated proteins mainly included: synapse-associated proteins (i.e. synaptosomal-associated protein 25 (SNAP25), complexin-1 (CPLX1), vesicle-associated membrane protein 2 (VAMP2), neurochondrin (NCDN)); mitochondria-related proteins (i.e. ADP/ATP translocase 1 (SLC25A4), 14-3-3 protein zeta/delta (YWHAZ)); cytoskeleton proteins (i.e. neurofilament light polypeptide (NEFL), tubulin beta-2B chain (TUBB2B), tubulin alpha-4A chain (TUBA4A)). The findings suggest that the dysregulations of synaptic, mitochondrial, and cytoskeletal proteins may be involved in iron-triggered memory impairment. This study provides new insights into the molecular mechanisms of iron neurotoxicity.


Assuntos
Ferro/administração & dosagem , Ferro/toxicidade , Memória/efeitos dos fármacos , Animais , Disfunção Cognitiva/induzido quimicamente , Esquema de Medicação , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Mapas de Interação de Proteínas , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA