Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Front Oncol ; 14: 1392245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015496

RESUMO

Objective: This study aims to assess the current research status, focus areas, and developmental trends in nasopharyngeal carcinoma (NPC) through a bibliometric analysis. Methods: Articles focusing on NPC published from 2000 to 2023 were retrieved from the Web of Science database. VOSviewer and CiteSpace were used for bibliometric and visual analysis. Results: A total of 14516 related publications were retrieved. There has been a steady increase in the number of NPC-related publications from 2000 to 2023. China was the dominant country in this field with 8948 papers (61.64%), followed by the USA (2234, 15.39%). Sun Yat-sen University was the most influential institution, while Ma J was the most prolific author. Furthermore, Head And Neck-journal For The Sciences And Specialties Of The Head And Neck was the most prolific journal. International Journal of Radiation Oncology Biology Physics had the highest total citation counts. "Introduction chemotherapy", "Concurrent chemotherapy", "Epithelial-mesenchymal transition", "Cancer stem cells", "MicroRNAs", "LncRNA", "Exosomes", and "Biomarker" were the most common keywords. The reference "Chen YP, 2019, Lancet" had the highest citations and strong outbreak value. Conclusion: The past two decades have witnessed a significant increase in research on NPC. The optimization of treatment mode is the most widely studied aspect at present. The mechanism of occurrence and development and the most favorable diagnostic and therapeutic targets are the research hotspots in the future.

2.
Antimicrob Resist Infect Control ; 13(1): 58, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845037

RESUMO

BACKGROUND: The prevalence of multiple nosocomial infections (MNIs) is on the rise, however, there remains a limited comprehension regarding the associated risk factors, cumulative risk, probability of occurrence, and impact on length of stay (LOS). METHOD: This multicenter study includes all hospitalized patients from 2020 to July 2023 in two sub-hospitals of a tertiary hospital in Guangming District, Shenzhen. The semi-Markov multi-state model (MSM) was utilized to analyze risk factors and cumulative risk of MNI, predict its occurrence probability, and calculate the extra LOS of nosocomial infection (NI). RESULTS: The risk factors for MNI include age, community infection at admission, surgery, and combined use of antibiotics. However, the cumulative risk of MNI is lower than that of single nosocomial infection (SNI). MNI is most likely to occur within 14 days after admission. Additionally, SNI prolongs LOS by an average of 7.48 days (95% Confidence Interval, CI: 6.06-8.68 days), while MNI prolongs LOS by an average of 15.94 days (95% CI: 14.03-18.17 days). Furthermore, the more sites of infection there are, the longer the extra LOS will be. CONCLUSION: The longer LOS and increased treatment difficulty of MNI result in a heavier disease burden for patients, necessitating targeted prevention and control measures.


Assuntos
Infecção Hospitalar , Tempo de Internação , Humanos , Infecção Hospitalar/epidemiologia , Tempo de Internação/estatística & dados numéricos , Fatores de Risco , Masculino , Feminino , Pessoa de Meia-Idade , China/epidemiologia , Idoso , Adulto , Prevalência , Centros de Atenção Terciária , Antibacterianos/uso terapêutico
3.
Pediatr Cardiol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940825

RESUMO

Pediatric patients with coronary artery lesions (CALs) after Kawasaki disease (KD) may be complicated with myocardial ischemia. Although previous studies in adults have proven the diagnostic value of 99mTc-MIBI myocardial perfusion imaging (MPI) for ischemic heart disease, its feasibility and accuracy in this pediatric population remain uncertain. In this retrospective study, we collected data of 177 pediatric patients (Age range: 6 months to 14 years) who had undergone MPI and coronary artery angiography (CAG) between July 2019 and February 2023. Using the positive result of CAG as the reference standard of myocardial ischemia, we compared the results of 99mTc-MIBI MPI with other non-invasive examinations, including cardiac magnetic resonance imaging (CMRI), echocardiogram, and comprehensive electrocardiogram-related examinations. All patients finished adenosine triphosphate stress MPI without major side effects. The sensitivity of MPI was 79.17%, which was greater than CMRI and echocardiogram (P < 0.05). The negative predictive value and the accuracy of MPI were 89.9% and 71.75%, indicating the advantages over others. Composite monitoring strategy of MPI and CMRI effectively improved the diagnostic performance (P < 0.001). In 4 cases diagnosed with myocardial ischemia by "MPI + CMRI," despite the absence of significant stenosis, multiple giant coronary artery aneurysms (GCAA) were all observed in CAG. 99mTc-MIBI MPI is the preferred non-invasive examination for detecting myocardial ischemia in pediatric patients with CAL after KD. When combined with CMRI, it can enhance diagnostic accuracy. Multiple GCAAs without stenosis may be an isolated risk factor of myocardial ischemia.

4.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2316-2325, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812132

RESUMO

This study aimed to investigate the intervention effect of tetramethylpyrazine(TMP) combined with transplantation of neural stem cells(NSCs) on middle cerebral artery occlusion(MCAO) rat model and to explore the mechanism of TMP combined with NSCs transplantation on ischemic stroke based on the regulation of stem cell biological behavior. MCAO rats were randomly divided into a model group, a TMP group, an NSCs transplantation group, and a TMP combined with NSCs transplantation group according to neurological function scores. A sham group was set up at the same time. The neurological function score was used to evaluate the improvement of neurological function in MCAO rats after TMP combined with NSCs transplantation. The proliferation, migration, and differentiation of NSCs were evaluated by BrdU, BrdU/DCX, BrdU/NeuN, and BrdU/GFAP immunofluorescence labeling. The protein expression of stromal cell-derived factor 1(SDF-1), C-X-C motif chemokine receptor 4(CXCR4), as well as oxidative stress pathway proteins nuclear factor erythroid 2-related factor 2(Nrf2), Kelch-like ECH-associated protein 1(KEAP1), heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1) was detected by Western blot to study the migration mechanism of TMP combined with NSCs. The results showed that TMP combined with NSCs transplantation significantly improved the neurological function score in MCAO rats. Immunofluorescence staining showed a significant increase in the number of BrdU~+, BrdU~+/DCX~+, BrdU~+/NeuN~+, and BrdU~+/GFAP~+ cells in the TMP, NSCs transplantation, and combined treatment groups, with the combined treatment group showing the most significant increase. Further Western blot analysis revealed significantly elevated expression of CXCR4 protein in the TMP, NSCs transplantation, and combined treatment groups, along with up-regulated protein expression of Nrf2, HO-1, and NQO1, and decreased KEAP1 protein expression. This study showed that both TMP and NSCs transplantation can promote the recovery of neurological function by promoting the proliferation, migration, and differentiation of NSCs, and the effect of TMP combined with NSCs transplantation is superior. The mechanism of action may be related to the activation of the Nrf2/HO-1/CXCR4 pathway.


Assuntos
Isquemia Encefálica , Proteína Duplacortina , Fator 2 Relacionado a NF-E2 , Células-Tronco Neurais , Pirazinas , Ratos Sprague-Dawley , Receptores CXCR4 , Animais , Pirazinas/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/transplante , Células-Tronco Neurais/metabolismo , Ratos , Masculino , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Transplante de Células-Tronco/métodos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Humanos , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média/terapia , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética
5.
Vaccine ; 42(18): 3774-3788, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38714443

RESUMO

Interleukin-1ß (IL-1ß) contributes to interstitial lung disease (ILD) and pulmonary fibrosis (PF), thus representing a potential therapeutic target for PF. In this study, we first verified the increased expression of IL-1ß in human fibrotic lung specimens and mouse lung tissues after intratracheal (i.t.) instillation of bleomycin (BLM), after which the pro-inflammatory and pro-fibrotic effects of recombinant IL-1ß were tested in mice. The results above suggested that vaccination against IL-1ß could be an effective strategy for managing PF. An anti-IL-1ß vaccine (PfTrx-IL-1ß) was designed by incorporating two IL-1ß-derived polypeptides, which have been verified as the key domains that mediate the binding of IL-1ß to its type I receptor, into Pyrococcus furiosus thioredoxin (PfTrx). The fusion protein PfTrx-IL-1ß was prepared by using E. coli expression system. The vaccine was well tolerated; it induced robust and long-lasting antibody responses in mice and neutralized the biological activity of IL-1ß, as shown in cellular assays. Pre-immunization with PfTrx-IL-1ß effectively protected mice from BLM-induced lung injury, inflammation, and fibrosis. In vitro experiments further showed that anti-PfTrx-IL-1ß antibodies counteracted the effects of IL-1ß concerning pro-inflammatory and pro-fibrotic cytokine production by primary mouse lung fibroblast, macrophages (RAW264.7), and type II alveolar epithelial cell (A549), primary mouse lung fibroblast activation and epithelial-mesenchymal transition (EMT) of alveolar epithelial cells. In addition, the vaccination did not compromise the anti-infection immunity in mice, as validated by a sepsis model. Our preliminary study suggests that the anti-IL-1ß vaccine we prepared has the potential to be developed as a therapeutic measure for PF. Further experiments are warranted to evaluate whether IL-1ß vaccination has the capacity of inhibiting chronic progressive PF and reversing established PF.


Assuntos
Bleomicina , Interleucina-1beta , Fibrose Pulmonar , Animais , Fibrose Pulmonar/prevenção & controle , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/induzido quimicamente , Interleucina-1beta/imunologia , Camundongos , Humanos , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Pulmão/patologia , Pulmão/imunologia , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/imunologia , Tiorredoxinas/imunologia
6.
Front Biosci (Landmark Ed) ; 29(5): 179, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38812313

RESUMO

Nasopharyngeal carcinoma (NPC) is an aggressive head and neck tumor that is influenced by a variety of molecular factors during its pathogenesis. Among these, the phosphatase and tensin homolog (PTEN) plays a crucial role in regulatory networks. This article systematically reviews the multifaceted functions of PTEN in NPC, including its roles in inhibiting cell proliferation, regulating migration and invasion, promoting autophagy and apoptosis, and influencing resistance to radiotherapy. Molecular factors such as long non-coding RNA, microRNA (miRNA), and circular RNA can modulate PTEN through various pathways, thereby impacting the biological behavior of NPC. In addition, PTEN is involved in regulating the tumor microenvironment of NPC, and its interaction with the Epstein-Barr virus has also recently become a focus of research. A comprehensive understanding of the PTEN regulatory network provides a foundation for future personalized and targeted therapeutic strategies. This study expands our understanding of the pathogenesis of NPC and suggests new directions in the field of tumor biology and NPC treatment.


Assuntos
MicroRNAs , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , PTEN Fosfo-Hidrolase , Microambiente Tumoral , Humanos , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Microambiente Tumoral/genética , Proliferação de Células/genética , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Autofagia/genética , Movimento Celular/genética , RNA Circular/genética , RNA Circular/metabolismo , RNA Circular/fisiologia , Herpesvirus Humano 4/genética , Transdução de Sinais
7.
Microorganisms ; 12(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38674587

RESUMO

Curcumin (CUR) is a lipophilic natural polyphenol that can be isolated from the rhizome of turmeric. Studies have proposed that CUR possesses a variety of biological activities. Due to its anti-inflammatory and antioxidant properties, CUR shows promise in the treatment of inflammatory bowel disease, while its anti-obesity effects make it a potential therapeutic agent in the management of obesity. In addition, curcumin's ability to prevent atherosclerosis and its cardiovascular benefits further expand its potential application in the treatment of cardiovascular disease. Nevertheless, owing to the limited bioavailability of CUR, it is difficult to validate its specific mechanism of action in the treatment of diseases. However, the restricted bioavailability of CUR makes it challenging to confirm its precise mode of action in disease treatment. Recent research indicates that the oral intake of curcumin may lead to elevated levels of residual curcumin in the gastrointestinal system, hinting at curcumin's potential to directly influence gut microbiota. Furthermore, the ecological dysregulation of the gut microbiota has been shown to be critical in the pathogenesis of human diseases. This review summarizes the impact of gut dysbiosis on host health and the various ways in which curcumin modulates dysbiosis and ameliorates various diseases caused by it through the administration of curcumin.

8.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1438-1445, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621927

RESUMO

Based on the sarcoma receptor coactivator(Src)/phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway, the mechanism of action of bulleyaconitine A in the treatment of bone destruction of experimental rheumatoid arthritis(RA) was explored. Firstly, key targets of RA bone destruction were collected through GeneCards, PharmGKB, and OMIM databa-ses. Potential targets of bulleyaconitine A were collected using SwissTargetPrediction and PharmMapper databases. Next, intersection targets were obtained by the Venny 2.1.0 platform. Protein-protein interaction(PPI) network and topology analysis were managed by utilizing the STRING database and Cytoscape 3.8.0. Then, Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were conducted in the DAVID database. AutoDock Vina was applied to predict the molecular docking and binding ability of bulleyaconitine A with key targets. Finally, a receptor activator of nuclear factor-κB(RANKL)-induced osteoclast differentiation model was established in vitro. Quantitative real-time polymerase chain reaction(qRT-PCR) was used to detect the mRNA expression levels of related targets, and immunofluorescence and Western blot were adopted to detect the protein expression level of key targets. It displayed that there was a total of 29 drug-disease targets, and Src was the core target of bulleyaconitine A in anti-RA bone destruction. Furthermore, KEGG enrichment analysis revealed that bulleyaconitine A may exert an anti-RA bone destruction effect by regulating the Src/PI3K/Akt signaling pathway. The molecular docking results showed that bulleyaconitine A had better bin-ding ability with Src, phosphatidylinositol-4,5-diphosphate 3-kinase(PIK3CA), and Akt1. The result of the experiment indicated that bulleyaconitine A not only dose-dependently inhibited the mRNA expression levels of osteoclast differentiation-related genes cathepsin K(CTSK) and matrix metalloproteinase-9(MMP-9)(P<0.01), but also significantly reduced the expression of p-c-Src, PI3K, as well as p-Akt in vitro osteoclasts(P<0.01). In summary, bulleyaconitine A may inhibit RA bone destruction by regulating the Src/PI3K/Akt signaling pathway. This study provides experimental support for the treatment of RA bone destruction with bulleyaconitine A and lays a foundation for the clinical application of bulleyaconitine A.


Assuntos
Aconitina/análogos & derivados , Artrite Experimental , Artrite Reumatoide , Medicamentos de Ervas Chinesas , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/genética , Simulação de Acoplamento Molecular , Transdução de Sinais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , RNA Mensageiro , Medicamentos de Ervas Chinesas/farmacologia
9.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1429-1437, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621926

RESUMO

This study aims to explore the mechanism of aqueous extract of Strychni Semen(SA) in relieving pain in the rat model of rheumatoid arthritis(RA) via Toll-like receptor 4(TLR4)/tumor necrosis factor-α(TNF-α)/matrix metalloproteinase-9(MMP-9) signaling pathway. Firstly, the main chemical components of Strychni Semen were searched against TCMSP, TCMID, ETCM, and related literature, and the main targets of the chemical components were retrieved from TargetNet and SwissTargetPrediction. The main targets of RA and pain were searched against GeneCards, Online Mendelian Inheritance in Man(OMIM), and Therapeutic Target Database(TTD). Venny 2.1.0 was used to obtain the common targets shared by Strychni Semen, RA, and pain, and STRING and Cytoscape 3.6.1 were used to build the protein-protein interaction network. Then, molecular docking was carried out in AutoDock Vina. Finally, the rat model of type Ⅱ collagen-induced arthritis(CIA) was established. The up-down method and acetone method were employed to examine the mechanical pain threshold and cold pain threshold of rats, and the pain-relieving effect of SA on CIA rats was evaluated comprehensively. Hematoxylin-eosin(HE) staining was employed to evaluate the histopathological changes of joints in CIA rats. The expression levels of key target proteins was determined by immunohistochemistry and Western blot, and the mRNA levels of key targets were determined by real-time fluorescence quantitative polymerase chain reaction(real-time PCR). The results of network prediction showed that Strychni Semen may act on the TLR4/TNF-α/MMP-9 signaling pathway to exert the pain-relieving effect. The results of molecular docking showed that brucine, the main active component of SA, had strong binding ability to TLR4, TNF-α, and MMP-9. The results of animal experiments showed that SA improved the mechanical and cold pain sensitivity(P<0.05, P<0.01) and reduced the joint histopathological score of CIA rats(P<0.01). In addition, medium and high doses of SA down-regulated the protein and mRNA levels of TNF-α, TLR4, and MMP-9(P<0.05,P<0.01). In conclusion, SA alleviated the mechanical pain sensitivity, cold pain sensitivity, and joint histopathological changes in CIA rats by inhibiting the over activation of TLR4/TNF-α/MMP-9 signaling pathway.


Assuntos
Artrite Reumatoide , Fator de Necrose Tumoral alfa , Humanos , Ratos , Animais , Fator de Necrose Tumoral alfa/genética , Metaloproteinase 9 da Matriz/genética , Sêmen , Simulação de Acoplamento Molecular , Receptor 4 Toll-Like/genética , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Transdução de Sinais , Dor/tratamento farmacológico , RNA Mensageiro
10.
Adv Sci (Weinh) ; 11(15): e2306623, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342622

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Functionally uncharacterized genes are an attractive repository to explore candidate oncogenes. It is demonstrated that C21orf58 displays an oncogenic role in promoting cell growth, tumorigenesis and sorafenib resistance of HCC cells by abnormal activation of STAT3 signaling. Mechanistically, a novel manner to regulate STAT3 signaling that adaptor C21orf58 forms a ternary complex is reveal with N-terminal domain of STAT3 and SH2 domain of JAK2, by which C21orf58 overactivates wild-type STAT3 by facilitating its phosphorylation mediated by JAK2, and hyper-activates of constitutively mutated STAT3 due to preferred binding with C21orf58 and JAK2. Moreover, it is validated that inhibition of C21orf58 with drug alminoprofen, selected by virtual screening, could effectively repress the viability and tumorigenesis of HCC cells. Therefore, it is identified that C21orf58 functions as an oncogenic adaptor, reveal a novel regulatory mechanism of JAK2/STAT3 signaling, explain the cause of abnormal activity of activated mutants of STAT3, and explore the attractive therapeutic potential by targeting C21orf58 in HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinogênese , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
11.
Commun Biol ; 7(1): 18, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38177713

RESUMO

Mitochondrial transcription termination factor 3 (MTERF3) negatively regulates mitochondrial DNA transcription. However, its role in hepatocellular carcinoma (HCC) progression remains elusive. Here, we investigate the expression and function of MTERF3 in HCC. MTERF3 is overexpressed in HCC tumor tissues and higher expression of MTERF3 positively correlates with poor overall survival of HCC patients. Knockdown of MTERF3 induces mitochondrial dysfunction, S-G2/M cell cycle arrest and apoptosis, resulting in cell proliferation inhibition. In contrast, overexpression of MTERF3 promotes cell cycle progression and cell proliferation. Mechanistically, mitochondrial dysfunction induced by MTERF3 knockdown promotes ROS accumulation, activating p38 MAPK signaling pathway to suppress HCC cell proliferation. In conclusion, ROS accumulation induced by MTERF3 knockdown inhibits HCC cell proliferation via p38 MAPK signaling pathway suggesting a promising target in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Doenças Mitocondriais , Proteínas Mitocondriais , Fatores de Transcrição , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Hepáticas/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Proteínas Mitocondriais/genética
12.
Cell Death Dis ; 15(1): 74, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242874

RESUMO

Copy number variations (CNVs) play a vital role in regulating genes expression and tumorigenesis. We explored the copy number alterations in early-stage lung adenocarcinoma using high-throughput sequencing and nucleic acid flight mass spectrometry technology, and found that 8q22.1-22.2 is frequently amplified in lung adenocarcinoma tissues. COX6C localizes on the region and its expression is notably enhanced that driven by amplification in lung adenocarcinoma. Knockdown of COX6C significantly inhibits the cell proliferation, and induces S-G2/M cell cycle arrest, mitosis deficiency and apoptosis. Moreover, COX6C depletion causes a deficiency in mitochondrial fusion, and impairment of oxidative phosphorylation. Mechanistically, COX6C-induced mitochondrial deficiency stimulates ROS accumulation and activates AMPK pathway, then leading to abnormality in spindle formation and chromosome segregation, activating spindle assemble checkpoint, causing mitotic arrest, and ultimately inducing cell apoptosis. Collectively, we suggested that copy amplification-mediated COX6C upregulation might serves as a prospective biomarker for prognosis and targeting therapy in patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Proliferação de Células , Complexo IV da Cadeia de Transporte de Elétrons , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Variações do Número de Cópias de DNA/genética , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias Pulmonares/patologia , Mitose/genética , Espécies Reativas de Oxigênio/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo
13.
Cancer Gene Ther ; 31(3): 484-494, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135698

RESUMO

Primary myelofibrosis (PMF) patients frequently have JAK2 (V617F), CALR (exon 9), or MPL (W515 or exon 10) strong driver gene mutation, which triggers abnormal activation of the JAK2-STATs signaling pathway that plays a complex role in the occurrence of PMF. However, about 10-15% of PMF patients have no above typical mutations in these strong driver genes, known as being "triple-negative", which are associated with poor prognosis. In this paper, we reported a unique secondary acute myeloid leukemia (sAML) case transformed from triple-negative PMF combined with lung cancer and erythroderma occurrence at the same time, which has not been reported so far. Through whole blood exome sequencing, four novel noncanonical mutations were detected in key regulatory genes SH2B3 (Q748 and S710) and STAT5a (C350 and K354). Meanwhile, STAT5a-S710 and SH2B3-K354 noncanonical mutations gained strong malignant biofunction on promoting cell growth and tumorigenesis by accelerating the G1/S transition. In the mechanistic study, these pernicious phenotypes driven by noncanonical mutations might be initial PMF by activating p-STAT5a/c-Myc/CyclinD1 and p-STAT3/p-AKT/p-ERK1/2 signaling axes. Therefore, our study explored the deleterious roles of novel noncanonical mutations in STAT5a and SH2B3, which may serve as susceptibility genes and display the oncogenic biofunction in the progression of PMF to acute myeloid leukemia-M2a (AML-M2a).


Assuntos
Leucemia Mieloide Aguda , Neoplasias Pulmonares , Mielofibrose Primária , Humanos , Calreticulina/genética , Calreticulina/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Leucemia Mieloide Aguda/genética , Mutação , Fenótipo , Mielofibrose Primária/genética
14.
J Ethnopharmacol ; 319(Pt 3): 117343, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37879509

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Yiqi Jiedu formula (YQJDF), rooted in the traditional Chinese medicinal principle of "tonifying qi and detoxifying", is remarkably efficacious in the clinical treatment of nasopharyngeal carcinoma (NPC). Previous studies have shed light on some of its anti-NPC effects and mechanisms, but the responsible pharmacological substances and their precise mechanisms of action remain unclear. AIM OF THE STUDY: The purpose of this study was to identify components of YQJDF that entered the bloodstream and to investigate their mechanisms of action against NPC through network pharmacology and serum metabolomics. MATERIAL AND METHODS: Components of YQJDF in serum were identified using liquid chromatography-tandem mass spectrometry. With these serum species as the focus of our research, network pharmacology analysis was used to identify active compounds and target genes that might mediate the efficacy of YQJDF in the treatment of NPC. Following establishment of an NPC xenograft model in nude mice, a non-targeted metabolomics approach was adopted to identify significant serum metabolites and metabolic pathways influenced by YQJDF. RESULTS: Thirty-six components of YQJDF were identified, primarily consisting of alkaloids, phenylpropanoids, and flavonoids. Notably, pathways such as PI3K/AKT, factors associated with Epstein-Barr virus infection, IL-17 signaling, and lipid metabolism, were highlighted as potential therapeutic targets of YQJDF during NPC treatment. Additionally, our findings suggested that YQJDF modified the metabolism of arginine and proline in the serum of mice bearing nasopharyngeal tumor grafts. CONCLUSIONS: This study identified the primary active components of YQJDF, highlighting its holistic role in the treatment of NPC through multiple targets and pathways. Furthermore, our findings provided a roadmap for future research into the mechanism of YQJDF in the therapy of NPC, setting the stage for its clinical application.


Assuntos
Medicamentos de Ervas Chinesas , Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Animais , Camundongos , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Camundongos Nus , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Herpesvirus Humano 4 , Metabolômica , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular
15.
Front Cell Dev Biol ; 11: 1237530, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829187

RESUMO

Deubiquitination is an important form of post-translational modification that regulates protein homeostasis. Ovarian tumor domain-containing proteins (OTUDs) subfamily member OTUD3 was identified as a deubiquitinating enzyme involved in the regulation of various physiological processes such as immunity and inflammation. Disturbances in these physiological processes trigger diseases in humans and animals, such as cancer, neurodegenerative diseases, diabetes, mastitis, etc. OTUD3 is aberrantly expressed in tumors and is a double-edged sword, exerting tumor-promoting or anti-tumor effects in different types of tumors affecting cancer cell proliferation, metastasis, and metabolism. OTUD3 is regulated at the transcriptional level by a number of MicroRNAs, such as miR-520h, miR-32, and miR101-3p. In addition, OTUD3 is regulated by a number of post-translational modifications, such as acetylation and ubiquitination. Therefore, understanding the regulatory mechanisms of OTUD3 expression can help provide insight into its function in human immunity and disease, offering the possibility of its use as a therapeutic target to diagnose or treat disease.

16.
Magn Reson Imaging ; 104: 115-120, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37844785

RESUMO

BACKGROUND: Patients with nasopharyngeal carcinoma (NPC) who undergo longitudinal follow-up contrast-enhanced MRI are at risk of developing gadolinium deposition in their neural tissue, which may potentially harm them. Therefore, for these patients, a non-contrast-enhanced method is potentially beneficial as an alternative approach to predict enhancement in T1-weighted imaging (CE-T1WI). The traditional intravoxel incoherent motion (IVIM) is one of the non-contrast-enhanced methods; however, the severe distortion and signal loss limit its application in patients with NPC. The present study aimed to investigate whether non-distortion IVIM could reduce the need of CE-T1WI in the follow-up of patients with NPC. METHODS: The patients with NPC underwent Turbo Spin-echo MVXD diffusion-weighted imaging-based IVIM (non-distortion IVIM) from November 2021 to May 2022. Firstly, thirty patients with NPC were underwent both non-distortion IVIM and traditional IVIM. The distortion rate (DR) of the non-distortion IVIM was compared with the traditional IVIM. Then, twenty-one NPC patients with tumors (areas >50mm2) were included and correlation coefficient analysis was used to assess the relationship between their non-distortion IVIM and CE-T1WI. Linear regression analysis was performed to determine whether non-distortion IVIM predictors could predict CE-T1WI. RESULTS: The correlation was observed between the parameter f of the non-distortion IVIM and the enhancement ratio of CE-T1WI (r = 0.543, P = 0.011). Moreover, the linear regression analysis revealed that f was an independent IVIM predictor of CE-T1WI in patients with NPC (P = 0.011). The DR of the non-distortion IVIM was significantly smaller than that of the traditional IVIM (0.12 ± 0.05 vs 0.48 ± 0.16, P < 0.001). CONCLUSIONS: In patients with NPC, non-distortion IVIM showed potential clinical benefits to reduce the need for contrast agents, and it can independently predict the enhancement ratio.

17.
Heliyon ; 9(6): e17078, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484327

RESUMO

The aim of this study is to explore the active components and potential molecular mechanism of action of Rubia cordifolia L. against nasopharyngeal carcinoma (NPC). We used network pharmacology, molecular docking, and bioinformatics analysis to identify the active components and their role against NPC. The experimental verification was detected by MTT, AnnexinV-FITC/PI double fluorescence staining and Western blotting method. Network pharmacology identified that mollugin is one of the most effective components inRubia cordifolia L. Important NPC targets included HSP90AA1, CDK1, EGFR, PIK3CA, MAPK14, and CDK2. Molecular docking revealed considerable binding activity of mollugin with either of the 6 important NPC targets. Bioinformatics analysis showed that these 6 important targets were mutated in NPC, and the expression of HSP90AA1, PIK3CA, and CDK2 in cancer tissues was significantly different from that in normal tissues. MTT detection and AnnexinV-FITC/PI double fluorescence staining showed that mollugin inhibited the proliferation and induced apoptosis of NPC cells. Western blotting indicated that the molecular mechanism of mollugin against NPC was related to the regulation of the expression of Survivin and XIAP. This study predicted and partially verified the pharmacological and molecular mechanism of action of Rubia cordifolia L. against NPC. Mollugin was identified as a potential active ingredient against NPC. These results prove the reliability of network pharmacology approaches and provide a basis for further research and application of Rubia cordifolia L. against NPC.

18.
Cell Mol Immunol ; 20(8): 881-894, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291237

RESUMO

Autoantibodies produced by B cells play a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). However, both the cellular source of antiphospholipid antibodies and their contributions to the development of lupus nephritis (LN) remain largely unclear. Here, we report a pathogenic role of anti-phosphatidylserine (PS) autoantibodies in the development of LN. Elevated serum PS-specific IgG levels were measured in model mice and SLE patients, especially in those with LN. PS-specific IgG accumulation was found in the kidney biopsies of LN patients. Both transfer of SLE PS-specific IgG and PS immunization triggered lupus-like glomerular immune complex deposition in recipient mice. ELISPOT analysis identified B1a cells as the main cell type that secretes PS-specific IgG in both lupus model mice and patients. Adoptive transfer of PS-specific B1a cells accelerated the PS-specific autoimmune response and renal damage in recipient lupus model mice, whereas depletion of B1a cells attenuated lupus progression. In culture, PS-specific B1a cells were significantly expanded upon treatment with chromatin components, while blockade of TLR signal cascades by DNase I digestion and inhibitory ODN 2088 or R406 treatment profoundly abrogated chromatin-induced PS-specific IgG secretion by lupus B1a cells. Thus, our study has demonstrated that the anti-PS autoantibodies produced by B1 cells contribute to lupus nephritis development. Our findings that blockade of the TLR/Syk signaling cascade inhibits PS-specific B1-cell expansion provide new insights into lupus pathogenesis and may facilitate the development of novel therapeutic targets for the treatment of LN in SLE.


Assuntos
Subpopulações de Linfócitos B , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Camundongos , Animais , Subpopulações de Linfócitos B/metabolismo , Autoanticorpos , Anticorpos Antifosfolipídeos , Cromatina , Imunoglobulina G
20.
Clin Rheumatol ; 42(7): 1847-1853, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36929498

RESUMO

OBJECTIVE: We aimed to investigate the efficacy and safety of tofacitinib in adult anti-melanoma differentiation-associated 5 gene (Anti-MDA5) antibody-positive dermatomyositis (DM) patients and evaluate the effects of tofacitinib on peripheral lymphocyte subsets. METHODS: An open-label study was conducted of 15 new-onset, untreated adult patients with anti-MDA5-positive DM for tofacitinib with a dose of 5mg twice per day. The primary outcome was defined by the total improvement score after treatment for 6 months, classified according to the 2016 American College of Rheumatology/ European League Against Rheumatism (ACR/EULAR) response criteria for adult DM and polymyositis. Secondary outcomes after 6 months treatment comprised the change in predicted forced vital capacity, the percentage of predicted carbon monoxide diffusion capacity, ferritin level and peripheral blood lymphocyte subsets measured by flow cytometry. RESULTS: Disease responses occurred in 10 patients (71.4%) after 6 months. The median total improvement score was 43.75 (41.875-59.375). Two patients achieved major improvement, seven achieved moderate and one minimal. The serum ferritin level (p = 0.008), DLCO% (p = 0.009) was improved and a marked increase in total lymphocyte cells (p = 0.045) and CD8+ T cells (p = 0.006) was measured after 6 months treatment compared to baseline. CONCLUSION: Tofacitinib demonstrates efficacy for new-onset, untreated adult patients with anti-MDA5-positive DM and stimulates proliferation of peripheral lymphocyte subsets (especially total lymphocyte cells and CD8+ T cells) after 6 months treatment. Further studies are warranted to validate the current findings. Key Points • Treatment of anti-melanoma differentiation-associated 5 gene antibody positive dermatomyositis is always challenging. • This prospective, open-label clinical trial demonstrates tofacitinib is an effective and safe agent for new-onset adult patients with anti-MDA5-positive DM. • Tofacitinib treatment results in an increase in peripheral lymphocyte numbers, especially CD8+ T cells at 6 months compared with pre-treatment levels.


Assuntos
Dermatomiosite , Glucocorticoides , Inibidores de Janus Quinases , Inibidores de Janus Quinases/administração & dosagem , Piperidinas , Pirimidinas , Dermatomiosite/tratamento farmacológico , Estudos Prospectivos , Humanos , Resultado do Tratamento , Glucocorticoides/administração & dosagem , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA