Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 369(1)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35798014

RESUMO

Chlorogenic acid (CGA), one of the most abundant polyphenols in the human diet, exhibits many biological properties, including antibacterial properties. Numerous studies have investigated the antibacterial effects of CGA, however, the molecular mechanisms governing its effects against Streptococcus pyogenes have not been fully elucidated. Streptococcus pyogenes is a Gram-positive pathogen that causes a wide range of human infections and postinfectious immune-mediated disorders. In this study, we used an isobaric tagging for relative and absolute quantitation (iTRAQ)-based proteomic technique to investigate the underlying mode of action of CGA against S. pyogenes. KEGG and GO analyses indicated that CGA affected the expression of protein alterations involved in multiple pathways, downregulating the expression of ribosomal proteins, and upregulating the expression of proteins associated with fatty acid metabolism, pyruvate metabolism, and propanoate metabolism, while activating the expression of oxidation-reduction-related proteins. Moreover, further cell-based experiments verified that CGA scavenges intracellular ROS in S. pyogenes. These results suggest that CGA may exert its antibacterial action through several actions, such as downregulating ribosomal subunits, affecting lipid metabolism, and scavenging intracellular ROS. The results of this study may help to elucidate the molecular mechanisms by which CGA combats pathogens.


Assuntos
Ácido Clorogênico , Metabolismo dos Lipídeos , Antibacterianos/farmacologia , Ácido Clorogênico/farmacologia , Humanos , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Streptococcus pyogenes/metabolismo
2.
Artigo em Chinês | MEDLINE | ID: mdl-16222093

RESUMO

To investigate gene expression profile in response to aluminum stress and to cloning the key genes related to aluminum tolerance, are crucial to genetic improvement of plant aluminum tolerance. In this study, suppression subtractive hybridization method was adopted to construct SSH-cDNA libraries at seedling stage of two maize inbred lines (Fig. 1), of which Mo17 is sensitive to aluminum toxicity and TL94B is tolerant. As a result, a forward SSH-cDNA library including 762 clones and a reverse SSH-cDNA library including 382 clones were constructed for Mo17. In the same way, a forward SSH-cDNA library including 760 clones and a reverse SSH-cDNA library including 380 clones were constructed for TL94B. Identification of these SSH-cDNA libraries shows that the length of inserted fragments ranges from 250 bp to 1.0 kb (Fig. 2), of which nearly 18% are positive clones. Through differential hybridization screening (Fig. 3), 124 and 47 positive clones were screened from forward and reverse SSH-cDNA libraries of Mo17 respectively; 103 and 64 positive clones from forward and reverse SSH-cDNA libraries of TL94B respectively. Total 338 positive clones from four SSH-cDNA libraries were sequenced, and all of the sequences of inserted fragments were analyzed using bioinformatical methods. A total of 232 kinds of EST sequences were obtained. Among these ESTs, 70.2% had significant homology with known genes, and the remaining 29.8% were function-unknown including 21 kinds of newly found ESTs (Table 1). An aluminum tolerant gene, GDP dissociation inhibitor gene, was detected its expression character by Northern hybridization (Fig. 4). These results indicate that the responses of maize to aluminum stress involve the interactions among different signal/metabolism pathways, such as signal transduction of stress-related factors, transcription and regulation of responsive genes, synthesis and transport of substances, changes in cell structures and functions.


Assuntos
Adaptação Fisiológica/genética , Alumínio/toxicidade , Biblioteca Gênica , Zea mays/genética , Northern Blotting , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA