RESUMO
BACKGROUND: Dietary management is the most important and effective treatment for citrin deficiency, as well as a decisive factor in the clinical outcome of patients. However, the dietary management ability of caregivers of children with citrin deficiency is generally poor, especially in East Asia where carbohydrate-based diets are predominant. The aim of this study was to identify the difficulties that caregivers encounter in the process of home-based dietary management, and the reasons responsible for these challenges. RESULTS: A total of 26 caregivers of children with citrin deficiency were recruited, including 24 mothers, one father, and one grandmother. Grounded theory was employed to identify three themes (covering 12 sub-themes) related to the dilemma of dietary management: dietary management that is difficult to implement; conflicts with traditional concepts; and the notion that children are only a part of family life. The first theme describes the objective difficulties that caregivers encounter in the process of dietary management; the second theme describes the underlying reasons responsible for the non-adherent behavior of caregivers; the third theme further reveals the self-compromise by caregivers in the face of multiple difficulties. CONCLUSIONS: This study reflects the adverse effects of multi-dimensional contradictions on the adherence of caregivers to dietary management. These findings reveal that the dietary management of citrin deficiency is not only a rational process, rather it is deeply embedded in family, social, and dietary traditions.
Assuntos
Proteínas de Ligação ao Cálcio , Cuidadores , Transportadores de Ânions Orgânicos , Proteínas de Ligação ao Cálcio/deficiência , Criança , Humanos , Transportadores de Ânions Orgânicos/deficiência , Pesquisa Qualitativa , Resultado do TratamentoRESUMO
Salt stress is a major constraint to plant growth and development, and plants have developed sophisticated mechanisms to cope with it. AtAGO2, an argonaute protein, is known to play an important role in plant adaptation to salt stress; however, the molecular mechanism of this phenomenon remains essentially unexplored. Here, we performed the yeast two-hybrid assay and found an R3H-domain containing protein, designated as MUG13.4, interacting with AtAGO2. Further bimolecular fluorescence complement (BiFC), glutathione-S-transferase (GST) pull-down, and co-immunoprecipitation (Co-IP) assays confirmed that MUG13.4 interacted with AtAGO2, and MUG13.4 could affect the slicing activity of AtAGO2 associated with miR173. MUG13.4 and AtAGO2 were both predominantly expressed in seeds and roots. Phenotypic analyses of the single and double mutants under salt stress confirmed involvement of MUG13.4-AtAGO2 complex as a component of the salt tolerance mechanism. The mug13.4×ago2-1 double mutant displayed retarded growth and hypersensitivity to salt stress that was more pronounced than in mug13.4 or atago2-1 single mutants. TAS1c-tasiRNA generating system in Nicotiana benthamiana revealed that MUG13.4 could influence the slicing activity of AtAGO2. We also found that MUG13.4 increasingly changed the phenotype of slicer-defected mutants of AtAGO2 in response to salt stress. These findings suggested that the function of AtAGO2 upon salt stress was dependent on MUG13.4. Further investigation suggested that AtAGO2 improved Arabidopsis tolerance to salt stress by affecting operation of the SOS signaling cascade at the transcript level. Taken together, these findings reveal a novel function of MUG13.4 in adjusting Arabidopsis adaptation to salt stress.