Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(5): e2305035, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38084501

RESUMO

Dysregulated eEF2K expression is implicated in the pathogenesis of many human cancers, including triple-negative breast cancer (TNBC), making it a plausible therapeutic target. However, specific eEF2K inhibitors with potent anti-cancer activity have not been available so far. Targeted protein degradation has emerged as a new strategy for drug discovery. In this study, a novel small molecule chemical is designed and synthesized, named as compound C1, which shows potent activity in degrading eEF2K. C1 selectively binds to F8, L10, R144, C146, E229, and Y236 of the eEF2K protein and promotes its proteasomal degradation by increasing the interaction between eEF2K and the ubiquitin E3 ligase ßTRCP in the form of molecular glue. C1 significantly inhibits the proliferation and metastasis of TNBC cells both in vitro and in vivo and in TNBC patient-derived organoids, and these antitumor effects are attributed to the degradation of eEF2K by C1. Additionally, combination treatment of C1 with paclitaxel, a commonly used chemotherapeutic drug, exhibits synergistic anti-tumor effects against TNBC. This study not only generates a powerful research tool to investigate the therapeutic potential of targeting eEF2K, but also provides a promising lead compound for developing novel drugs for the treatment of TNBC and other cancers.


Assuntos
Quinase do Fator 2 de Elongação , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Fosforilação , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Quinase do Fator 2 de Elongação/antagonistas & inibidores
2.
Chem Biol Interact ; 382: 110567, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37271214

RESUMO

Triple-negative breast cancer (TNBC) is a particularly invasive subtype of breast cancer and usually has a poor prognosis due to the lack of effective therapeutic targets. Approximately 25% of TNBC patients carry a breast cancer susceptibility gene1/2 (BRCA1/2) mutation. Clinically, PARP1 inhibitors have been approved for the treatment of patients with BRCA1/2-mutated breast cancer through the mechanism of synthetic lethality. In this study, we identified compound 6 {systematic name: 2-[2-(4-Hydroxy-phenyl)-vinyl]-3H-quinazolin-4-one} as a novel PARP1 inhibitor from established virtual screening methods. Compound 6 exerted stronger PARP1 inhibitory activity and anti-cancer activity as compared to olaparib in BRCA1-mutated TNBC cells and TNBC patient-derived organoids. Unexpectedly, we found that compound 6 also significantly inhibited cell viability, proliferation, and induced cell apoptosis in BRCA wild-type TNBC cells. To further elucidate the underlying molecular mechanism, we found that tankyrase (TNKS), a vital promoter of homologous-recombination repair, was a potential target of compound 6 by cheminformatics analysis. Compound 6 not only decreased the expression of PAR, but also down-regulated the expression of TNKS, thus resulting in significant DNA single-strand and double-strand breaks in BRCA wild-type TNBC cells. In addition, we demonstrated that compound 6 enhanced the sensitivity of BRCA1-mutated and wild-type TNBC cells to chemotherapy including paclitaxel and cisplatin. Collectively, our study identified a novel PARP1 inhibitor, providing a therapeutic candidate for the treatment of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína BRCA1/genética , Linhagem Celular Tumoral , Proteína BRCA2 , Poli(ADP-Ribose) Polimerase-1
3.
Acta Biochim Biophys Sin (Shanghai) ; 53(1): 63-71, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33434281

RESUMO

Myristica fragrans is a traditional herbal medicine and has been shown to alleviate the development of atherosclerosis. However, the anti-atherogenic mechanisms of M. fragrans are still to be addressed. In this study, we explored the effect of M. fragrans on lipid metabolism and inflammation and its mechanisms in THP-1-derived macrophages. The quantitative polymerase chain reaction and western blot analysis results showed that M. fragrans promotes cholesterol efflux from THP-1-derived macrophages and reduces intracellular total cholesterol, cholesterol ester, and free cholesterol contents in a dose- and a time-dependent manner. Further study found that liver X receptor alpha (LXRα) antagonist GGPP significantly blocked the upregulation of ABCA1 expression with M. fragrans treatment. In addition, chromatin immunoprecipitation assay confirmed that GATA binding protein 3 (GATA3) can bind to the LXRα promoter, and inhibition of GATA3 led to the downregulation of LXRα and ATP-binding cassette subfamily A member 1 expression. Furthermore, M. fragrans reduced lipid accumulation, followed by decreasing tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß and increasing IL-10 produced by THP-1-derived macrophages. Therefore, M. fragrans is identified as a valuable therapeutic medicine for atherosclerotic cardiovascular disease.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transporte Biológico/efeitos dos fármacos , Ésteres do Colesterol/metabolismo , Citocinas/metabolismo , Fator de Transcrição GATA3/antagonistas & inibidores , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/análise , Receptores X do Fígado/genética , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Myristica , Regiões Promotoras Genéticas , Células THP-1/citologia , Regulação para Cima
4.
J Lipid Res ; 60(12): 2020-2033, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31662443

RESUMO

CXC chemokine ligand 12 (CXCL12) is a member of the CXC chemokine family and mainly acts on cell chemotaxis. CXCL12 also elicits a proatherogenic role, but the molecular mechanisms have not been fully defined yet. We aimed to reveal if and how CXCL12 promoted atherosclerosis via regulating lipid metabolism. In vitro, our data showed that CXCL12 could reduce ABCA1 expression, and it mediated cholesterol efflux from THP-1-derived macrophages to apoA-I. Data from the luciferase reporter gene and chromatin immunoprecipitation assays revealed that transcription factor 21 (TCF21) stimulated the transcription of ABCA1 via binding to its promoter region, which was repressed by CXCL12. We found that CXCL12 increased the levels of phosphorylated glycogen synthase kinase 3ß (GSK3ß) and the phosphorylation of ß-catenin at the Thr120 position. Inactivation of GSK3ß or ß-catenin increased the expression of TCF21 and ABCA1. Further, knockdown or inhibition of CXC chemokine receptor 4 (CXCR4) blocked the effects of CXCL12 on TCF21 and ABCA1 expression and the phosphorylation of GSK3ß and ß-catenin. In vivo, the overexpression of CXCL12 in Apoe-/- mice via lentivirus enlarged the atherosclerotic lesion area and increased macrophage infiltration in atherosclerotic plaques. We further found that the overexpression of CXCL12 reduced the efficiency of reverse cholesterol transport and plasma HDL-C levels, decreased ABCA1 expression in the aorta and mouse peritoneal macrophages (MPMs), and suppressed cholesterol efflux from MPMs to apoA-I in Apoe-/- mice. Collectively, these findings suggest that CXCL12 interacts with CXCR4 and then activates the GSK-3ß/ß-cateninT120/TCF21 signaling pathway to inhibit ABCA1-dependent cholesterol efflux from macrophages and aggravate atherosclerosis. Targeting CXCL12 may be a novel and promising strategy for the prevention and treatment of atherosclerotic cardiovascular diseases.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Aterosclerose/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Quimiocina CXCL12/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Receptores CXCR4/metabolismo , beta Catenina/metabolismo , Animais , Apolipoproteínas E/deficiência , Aterosclerose/genética , Aterosclerose/patologia , Colesterol/metabolismo , Regulação para Baixo , Células HEK293 , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Acta Biochim Biophys Sin (Shanghai) ; 50(9): 853-861, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30060101

RESUMO

Cholesterol is one of the major components of biological membranes and has an important function in osteoclast formation and survival. It has been reported that high-density lipoprotein (HDL) promotes cholesterol efflux from osteoclasts and induces their apoptosis, but the underlying mechanisms are unclear. In this study, we investigated how HDL promotes osteoclast cholesterol efflux and explored its effect on osteoclast formation and survival. Our results showed that the maximum diameter and fusion index of osteoclasts were decreased, while the ratios of osteoclasts with pyknotic nuclei were increased when cells were treated with HDL (600 ng/ml), as revealed by tartrate-resistant acid phosphatase-positive staining and microscopy assay. HDL enhanced cellular cholesterol efflux from osteoclasts in both concentration- and time-dependent manners. The ability of HDL3 to stimulate cholesterol efflux was stronger than preß-HDL, HDL2, and ApoAI. Knockdown of ABCG1 expression reduced HDL-mediated cholesterol efflux and restored the HDL-induced reduction in osteoclast formation. Finally, HDL3 promoted sphingomyelin efflux from osteoclasts and reduced the expression of caveolin-1. Together, the findings demonstrate that HDL3 upregulates ABCG1 expression and promotes cholesterol efflux from osteoclast, impairs cholesterol homeostasis in osteoclasts, and consequently enhances osteoclast apoptosis.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Lipoproteínas HDL/farmacologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Colesterol/metabolismo , Expressão Gênica/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Osteoclastos/citologia , Osteoclastos/metabolismo , Ligante RANK/farmacologia , Células RAW 264.7 , Interferência de RNA , Regulação para Cima
6.
Biochem Biophys Res Commun ; 500(2): 318-324, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29653102

RESUMO

Atherosclerosis is a dyslipidemia disease characterized by foam cell formation driven by the accumulation of lipids. Visceral adipose tissue-derived serine protease inhibitor (vaspin) is known to suppress the development of atherosclerosis via its anti-inflammatory properties, but it is not yet known whether vaspin affects cholesterol efflux in THP-1 macrophage-derived foam cells. Here, we investigated the effects of vaspin on ABCA1 expression and cholesterol efflux, and further explored the underlying mechanism. We found that vaspin decreased miR-33a levels, which in turn increased ABCA1 expression and cholesteorl efflux. We also found that inhibition of NF-κB reduced miR-33a expression and vaspin suppressed LPS-mediated NF-κB phosphorylation. Our findings suggest that vaspin is not only a regular of inflammasion but also a promoter of cholesterol efflux.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo , Células Espumosas/metabolismo , Gordura Intra-Abdominal/metabolismo , Macrófagos/citologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Serpinas/metabolismo , Regulação para Cima , Transportador 1 de Cassete de Ligação de ATP/genética , Sequência de Bases , Linhagem Celular , Regulação para Baixo , Células Espumosas/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos , MicroRNAs/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA