Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38790728

RESUMO

Celery seeds contain various bioactive compounds and are commonly used as a spice and nutritional supplement in people's daily lives. The quality of celery seeds sold on the market varies, and their regions of production are unclear. This study evaluated the metabolites of Chinese celery seeds from three production regions using HS-SPME-GC-MS, HS-GC-IMS, and UPLC-ESI-MS/MS. The results indicate that GC-IMS analysis obtained a metabolic profile different from that detected using GC-MS. Terpenoids, polyphenols, coumarins, and phthalides are the main bioactive compounds in celery seeds. The production region significantly affects the metabolic characteristics of celery seeds. Based on GC-MS data, GC-IMS data, and LC-MS data, the variation analysis screened 6, 12, and 8 metabolites as potential characteristic metabolites in celery seeds related to the production region, respectively. According to the aromatic characteristics of the characteristic metabolites, seeds from the HCQ region and HZC region have a strong herbal, woody, celery, and turpentine aroma. The concentration of secondary metabolites was highest in the seeds from the HCQ region followed by the HZC region, and it was the lowest in the JJC region. Altogether, this study investigates how geographical origins influence the metabolomic profile of celery seeds. The results can be used to guide the planting and harvesting of celery seeds in suitable regions.

2.
Int J Mol Sci ; 24(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37833943

RESUMO

Bitter gourd (Momordica charantia L.) contains rich bioactive ingredients and secondary metabolites; hence, it has been used as medicine and food product. This study systematically quantified the nutrient contents, the total content of phenolic acids (TPC), flavonoids (TFC), and triterpenoids (TTC) in seven different cultivars of bitter gourd. This study also estimated the organic acid content and antioxidative capacity of different cultivars of bitter gourd. Although the TPC, TFC, TTC, organic acid content, and antioxidative activity differed significantly among different cultivars of bitter gourd, significant correlations were also observed in the obtained data. In the metabolomics analysis, 370 secondary metabolites were identified in seven cultivars of bitter gourd; flavonoids and phenolic acids were significantly more. Differentially accumulated metabolites identified in this study were mainly associated with secondary metabolic pathways, including pathways of flavonoid, flavonol, isoflavonoid, flavone, folate, and phenylpropanoid biosyntheses. A number of metabolites (n = 27) were significantly correlated (positive or negative) with antioxidative capacity (r ≥ 0.7 and p < 0.05). The outcomes suggest that bitter gourd contains a plethora of bioactive compounds; hence, bitter gourd may potentially be applied in developing novel molecules of medicinal importance.


Assuntos
Momordica charantia , Antioxidantes , Extratos Vegetais , Flavonoides , Frutas
3.
Adv Mater ; 35(30): e2302409, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37120846

RESUMO

Protein-based nanomaterials have broad applications in the biomedical and bionanotechnological sectors owing to their outstanding properties such as high biocompatibility and biodegradability, structural stability, sophisticated functional versatility, and being environmentally benign. They have gained considerable attention in drug delivery, cancer therapeutics, vaccines, immunotherapies, biosensing, and biocatalysis. However, so far, in the battle against the increasing reports of antibiotic resistance and emerging drug-resistant bacteria, unique nanostructures of this kind are lacking, hindering their potential next-generation antibacterial agents. Here, the discovery of a class of supramolecular nanostructures with well-defined shapes, geometries, or architectures (termed "protein nanospears") based on engineered proteins, exhibiting exceptional broad-spectrum antibacterial activities, is reported. The protein nanospears are engineered via spontaneous cleavage-dependent or precisely tunable self-assembly routes using mild metal salt-ions (Mg2+ , Ca2+ , Na+ ) as a molecular trigger. The nanospears' dimensions collectively range from entire nano- to micrometer scale. The protein nanospears display exceptional thermal and chemical stability yet rapidly disassemble upon exposure to high concentrations of chaotropes (>1 mm sodium dodecyl sulfate (SDS)). Using a combination of biological assays and electron microscopy imaging, it is revealed that the nanospears spontaneously induce rapid and irreparable damage to bacterial morphology via a unique action mechanism provided by their nanostructure and enzymatic action, a feat inaccessible to traditional antibiotics. These protein-based nanospears show promise as a potent tool to combat the growing threats of resistant bacteria, inspiring a new way to engineer other antibacterial protein nanomaterials with diverse structural and dimensional architectures and functional properties.


Assuntos
Antibacterianos , Nanoestruturas , Antibacterianos/farmacologia , Antibacterianos/química , Nanoestruturas/química , Bactérias
4.
Small ; 19(12): e2206513, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642821

RESUMO

RNA molecules have emerged as increasingly attractive biomaterials with important applications such as RNA interference (RNAi) for cancer treatment and mRNA vaccines against infectious diseases. However, it remains challenging to engineer RNA biomaterials with sophisticated functions such as non-covalent light-switching ability. Herein, light-responsive RNA-protein nanowires are engineered to have such functions. It first demonstrates that the high affinity of RNA aptamer enables the formation of long RNA-protein nanowires through designing a dimeric RNA aptamer and an engineered green fluorescence protein (GFP) that contains two TAT-derived peptides at N- and C- termini. GFP is then replaced with an optogenetic protein pair system, LOV2 (light-oxygen-voltage) protein and its binding partner ZDK (Z subunit of protein A), to confer blue light-controlled photo-switching ability. The light-responsive nanowires are long (>500 nm) in the dark, but small (20-30 nm) when exposed to light. Importantly, the co-assembly of this RNA-protein hybrid biomaterial does not rely on the photochemistry commonly used for light-responsive biomaterials, such as bond formation, cleavage, and isomerization, and is thus reversible. These RNA-protein structures can serve as a new class of light-controlled biocompatible frameworks for incorporating versatile elements such as RNA, DNA, and enzymes.


Assuntos
Aptâmeros de Nucleotídeos , Nanofios , RNA/química , Aptâmeros de Nucleotídeos/química , Interferência de RNA , Peptídeos , Proteínas de Fluorescência Verde
5.
Heliyon ; 8(10): e10930, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36262298

RESUMO

Replacing rockwool with more sustainable materials, such as coir, is an effective measure to improve the sustainability of soilless cultivation in the greenhouse. To comprehensively assess the feasibility of coir before using it widely, coir was compared to rockwool as a cucumber cultivation substrate to evaluate its performance on mineral elements in the substrates, drainage, and in the plants. Plant growth, amino acids, and flavor substances of cucumber fruits were also compared between the two substrates. Compared to rockwool, coir significantly increased the LAI and yield of cucumber crops as well as contents of Ca, Mg, S, Cl and Zn in leaves and fruits. Contents of P, K, Ca, Mg, Cl, Zn, and B in the substrate were higher for coir while those of Fe, Cu, and Mn in the drainage lower. Moreover, coir also significantly increased contents of amino acids (His, Leu, Ile, Phe, Lys, Asp, Glu and Pro) and flavor substance (TC, PS, TP, CLL, CuB, and LA) in cucumber fruits. Our results demonstrated the potential of coir as a replacement of rockwool to improve sustainability of soilless cultivation in the greenhouse.

6.
ACS Appl Bio Mater ; 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36194892

RESUMO

Antibiotic resistance represents a serious global health concern and has stimulated the development of antimicrobial nanomaterials to combat resistant bacteria. Protein-based nanoparticles combining characteristics of both proteins and nanoparticles offer advantages including high biocompatibility, attractive biodegradability, enhanced bioavailability and functional versatility. They have played an increasing role as promising candidates for broad applications ranging from biocatalysts and drug delivery to vaccine development to cancer therapeutics. However, their application as antibacterial biomaterials to address challenging antibiotic-resistance problems has not been explicitly pursued. Herein, we describe engineering protein-only nanoparticles against resistant Gram-positive bacteria. A self-assembling peptide (P114) enables the assembly of a phage lytic enzyme (P128) into nanoparticles in response to pH reduction. Compared to native P128 and monomeric P114-P128, P128 nanoparticles (P128NANO) demonstrated a stronger bactericidal ability with high potency at lower concentrations (2-3-fold lower), particularly for methicillin-resistant Staphylococcus aureus strains. In addition, P128NANO showed an enhanced thermal (up to 65 °C) and storage stability and elicited extensive damages to bacterial cell walls. These remarkable antibacterial abilities are likely due to the P128NANO nanostructure, mediating multivalent interactions with bacterial cell walls at increased local concentrations of endolysin. The engineered endolysin nanoparticles offer a promising antimicrobial alternative to conventional antibiotics.

7.
ACS Nano ; 12(7): 6956-6967, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29928801

RESUMO

Protein-based nanomaterials are gaining importance in biomedical and biosensor applications where tunability of the protein particle size is highly desirable. Rationally designed proteins and peptides offer control over molecular interactions between monomeric protein units to modulate their self-assembly and thus particle formation. Here, using an example enzyme-peptide system produced as a single construct by bacterial expression, we explore how solution conditions affect the formation and size of protein nanoparticles. We found two independent routes to particle formation, one facilitated by charge interactions between protein-peptide and peptide-peptide exemplified by pH change or the presence of NO3- or NH4+ and the second route via metal-ion coordination ( e.g., Mg2+) within peptides. We further demonstrate that the two independent factors of pH and Mg2+ ions can be combined to regulate nanoparticle size. Charge interactions between protein-peptide monomers play a key role in either promoting or suppressing protein assembly; the intermolecular contact points within protein-peptide monomers involved in nanoparticle formation were identified by chemical cross-linking mass spectrometry. Importantly, the protein nanoparticles retain their catalytic activities, suggesting that their native structures are unaffected. Once formed, protein nanoparticles remain stable over long periods of storage or with changed solution conditions. Nevertheless, formation of nanoparticles is also reversible-they can be disassembled by desalting the buffer to remove complexing agents ( e.g., Mg2+). This study defines the factors controlling formation of protein nanoparticles driven by self-assembly peptides and an understanding of complex ion-peptide interactions involved within, offering a convenient approach to tailor protein nanoparticles without changing amino acid sequence.


Assuntos
Nanopartículas/química , Peptídeos/química , Proteínas/química , Íons/química , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Peptídeos/síntese química , Soluções , Propriedades de Superfície
8.
Soft Matter ; 13(43): 7953-7961, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29038804

RESUMO

The interfacial properties of nanoscale materials have profound influence on biodistribution and stability as well as the effectiveness of sophisticated surface-encoded properties such as active targeting to cell surface receptors. Tailorable nanocarrier emulsions (TNEs) are a novel class of oil-in-water emulsions stabilised by molecularly-engineered biosurfactants that permit single-pot stepwise surface modification with related polypeptides that may be chemically conjugated or genetically fused to biofunctional moieties. We have probed the structure and function of poly(ethylene glycol) (PEG) used to decorate TNEs in this way. The molecular weight of PEG decorating TNEs has considerable impact on the ζ-potential of the emulsion particles, related to differential interfacial thickness of the PEG layer as determined by X-ray reflectometry. By co-modifying TNEs with an antibody fragment, we show that the molecular weight and density of PEG governs the competing parameters of accessibility of the targeting moiety and of shielding the interface from non-specific interactions with the environment. The fundamental understanding of the molecular details of the PEG layer that we present provides valuable insights into the structure-function relationship for soft nanomaterial interfaces. This work therefore paves the way for further rational design of TNEs and other nanocarriers that must interact with their environment in controlled and predictable ways.

9.
Sci Rep ; 6: 35424, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752105

RESUMO

To investigate the physiological responses of plants to high root-zone temperature (HT, 35 °C) stress mitigated by exogenous glutathione (GSH), cucumber (Cucumis sativus L.) seedlings were exposed to HT with or without GSH treatment for 4 days and following with 4 days of recovery. Plant physiological variables, growth, and gene expression related to antioxidant enzymes and Calvin cycle were quantified. The results showed that HT significantly decreased GSH content, the ratio of reduced to oxidized glutathione (GSH/GSSG), chlorophyll content, photosynthesis and related gene expression, shoot height, stem diameter, as well as dry weight. The exogenous GSH treatment clearly lessened the HT stress by increasing the above variables. Meanwhile, HT significantly increased soluble protein content, proline and malondialdehyde (MDA) content as well as O2•- production rate, the gene expression and activities of antioxidant enzymes. The GSH treatment remarkably improved soluble protein content, proline content, antioxidant enzymes activities, and antioxidant enzymes related gene expression, and reduced the MDA content and O2•- production rate compared to no GSH treatment in the HT condition. Our results suggest that exogenous GSH enhances cucumber seedling tolerance of HT stress by modulating the photosynthesis, antioxidant and osmolytes systems to improve physiological adaptation.


Assuntos
Antioxidantes/metabolismo , Cucumis sativus/fisiologia , Glutationa/metabolismo , Fotossíntese , Raízes de Plantas/fisiologia , Plântula/fisiologia , Temperatura , Adaptação Biológica , Homeostase , Peróxido de Hidrogênio/metabolismo , Oxirredução , Fenótipo , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Langmuir ; 30(33): 10080-9, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25093605

RESUMO

The peptides AM1 and Lac21E self-organize into switchable films at an air-water interface. In an earlier study, it was proposed that both AM1 and Lac21E formed monolayers of α-helical peptides based on consistency with neutron reflectivity data. In this article, molecular dynamics simulations of assemblies of helical and nonhelical AM1 and Lac21E at an air-water interface suggest some tendency for the peptides to spontaneously adopt an α-helical conformation. However, irrespective of the structure of the peptides, the simulations reproduced not only the structural properties of the films (thickness and distribution of the hydrophobic and hydrophilic amino acids) but also the experimental neutron reflectivity measurements at different contrast variations. This suggests that neutron reflectometry alone cannot be used to determine the structure of the peptides in this case. However, together with molecular dynamics simulations, it is possible to obtain a detailed understanding of peptide films at an atomic level.


Assuntos
Membranas Artificiais , Simulação de Dinâmica Molecular , Peptídeos/química
11.
J R Soc Interface ; 10(80): 20120987, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23303222

RESUMO

Mixtures of a large, structured protein with a smaller, unstructured component are inherently complex and hard to characterize at interfaces, leading to difficulties in understanding their interfacial behaviours and, therefore, formulation optimization. Here, we investigated interfacial properties of such a mixed system. Simplicity was achieved using designed sequences in which chemical differences had been eliminated to isolate the effect of molecular size and structure, namely a short unstructured peptide (DAMP1) and its longer structured protein concatamer (DAMP4). Interfacial tension measurements suggested that the size and bulk structuring of the larger molecule led to much slower adsorption kinetics. Neutron reflectometry at equilibrium revealed that both molecules adsorbed as a monolayer to the air-water interface (indicating unfolding of DAMP4 to give a chain of four connected DAMP1 molecules), with a concentration ratio equal to that in the bulk. This suggests the overall free energy of adsorption is equal despite differences in size and bulk structure. At small interfacial extensional strains, only molecule packing influenced the stress response. At larger strains, the effect of size became apparent, with DAMP4 registering a higher stress response and interfacial elasticity. When both components were present at the interface, most stress-dissipating movement was achieved by DAMP1. This work thus provides insights into the role of proteins' molecular size and structure on their interfacial properties, and the designed sequences introduced here can serve as effective tools for interfacial studies of proteins and polymers.


Assuntos
Modelos Químicos , Peptídeos/química , Dobramento de Proteína , Elasticidade , Peptídeos/síntese química
12.
ACS Nano ; 6(3): 2104-17, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22385282

RESUMO

Large pore mesoporous silica nanoparticles (LP-MSNs) functionalized with poly-L-lysine (PLL) were designed as a new carrier material for gene delivery applications. The synthesized LP-MSNs are 100-200 nm in diameter and are composed of cage-like pores organized in a cubic mesostructure. The size of the cavities is about 28 nm with an entrance size of 13.4 nm. Successful grafting of PLL onto the silica surface through covalent immobilization was confirmed by X-ray photoelectron spectroscopy, solid-state (13)C magic-angle spinning nuclear magnetic resonance, Fourier transformed infrared, and thermogravimetric analysis. As a result of the particle modification with PLL, a significant increase of the nanoparticle binding capacity for oligo-DNAs was observed compared to the native unmodified silica particles. Consequently, PLL-functionalized nanoparticles exhibited a strong ability to deliver oligo DNA-Cy3 (a model for siRNA) to Hela cells. Furthermore, PLL-functionalized nanoparticles were proven to be superior as gene carriers compared to amino-functionalized nanoparticles and the native nanoparticles. The system was tested to deliver functional siRNA against minibrain-related kinase and polo-like kinase 1 in osteosarcoma cancer cells. Here, the functionalized particles demonstrated great potential for efficient gene transfer into cancer cells as a decrease of the cellular viability of the osteosarcoma cancer cells was induced. Moreover, the PLL-modified silica nanoparticles also exhibit a high biocompatibility, with low cytotoxicity observed up to 100 µg/mL.


Assuntos
Materiais Biocompatíveis/química , Portadores de Fármacos/química , Nanopartículas/química , Polilisina/química , Dióxido de Silício/química , Transfecção/métodos , Adsorção , Aminas/química , Sequência de Bases , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/toxicidade , Transporte Biológico , Linhagem Celular Tumoral , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Inativação Gênica , Humanos , Oncogenes/genética , Porosidade , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Silanos/química , Propriedades de Superfície
13.
Langmuir ; 25(7): 4021-6, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19714889

RESUMO

Rationally designed peptide biosurfactant AM1 was mixed with sodium dodecyl benzene sulfonate (SDOBS) to self-assemble a mixed surfactant-biosurfactant layer at the air-water interface. Under optimal conditions in the presence of Zn2+, the interfacial elasticity of the mixed layer was approximately 5-fold higher than for biosurfactant alone. Two head positional isomers, SDOBS-2 and SDOBS-6, were compared for their ability to enhance interfacial film strength. SDOBS-6 forms a stronger layer with AM1 than does SDOBS-2. The highest interfacial elasticity of the AM1/SDOBS-6 layer was 640 mN m(-1) whereas the maximum value for the AM1/SDOBS-2 layer was 440 mN m(-1). Neutron reflection was used to investigate the structure of AM1/SDOBS films at varied bulk SDOBS concentrations. Both deuterated and nondeuterated SDOBS-2 and SDOBS-6 were used to provide contrast variation. It was shown that there is cooperative interaction between AM1 and SDOBS at low SDOBS concentration in the presence of 100 microM Zn2+, promoting AM1 adsorption atthe interface to form a two-layered structure of AM1 resulting in a mechanically strong interfacial film. In the presence of EDTA, only a single AM1 layer was formed at the same SDOBS concentration, and the film did not show lateral force transmission capability. Further increasing the SDOBS concentration to a molar excess of > 10x decreased the peptide population at the interface and resulted in a mechanically weak layer. Compared to SDOBS-6, SDOBS-2 depletes AM1 at a lower bulk concentration. These results demonstrate that the film strength of a self-assembled surfactant-biosurfactant mixed layer can be fine tuned by changing the isomer type and concentration of surfactant and by adding or removing metal ions.


Assuntos
Ar , Benzenossulfonatos/química , Peptídeos/química , Tensoativos/química , Água/química , Deutério/química , Isomerismo , Difração de Nêutrons
14.
Glycoconj J ; 26(1): 111-6, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18618241

RESUMO

The galactoside-specific Viscum album L. agglutinin (VAA) is a potent biohazard akin to ricin and a mitogen for immune and tumor cells. These activities depend on cell surface binding to glycans. It is an open question whether the process of ligand binding alters the lectin's shape. Small angle neutron scattering (SANS) experiments revealed that the carbohydrate ligand lactose induced a decrease of the radius of gyration of dimeric VAA from 54.5 +/- 1 to 49.5 +/- 1 A in water. Apparently, VAA in aqueous solution and at the concentrations tested at 3.6 mg/ml and above adopts a compacted structure as response to ligand binding. In contrast to the behavior in aqueous solution, lactose binding in DMSO resulted in an increase of the lectin's radius of gyration from 49 +/- 1 to 55.5 +/- 1 A. Because shape changes may be reflected in the thermostability of the protein, this parameter was examined by activity assays of protein exposed to 60 degrees C and 70 degrees C and by differential scanning calorimetry (DSC). In line with the lactose-induced conformational alterations revealed by the SANS experiments, lactose presence enhanced the thermostability of VAA in water. Thus, binding of the carbohydrate ligand in solution can entail changes in shape and thermostability in the case of the tested plant lectin.


Assuntos
Dimetil Sulfóxido/química , Lactose/química , Dobramento de Proteína , Proteínas Inativadoras de Ribossomos/química , Toxinas Biológicas/química , Viscum album/química , Varredura Diferencial de Calorimetria/métodos , Dimetil Sulfóxido/metabolismo , Temperatura Alta , Lactose/metabolismo , Ligantes , Nêutrons , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Inativadoras de Ribossomos/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 2 , Toxinas Biológicas/metabolismo
15.
Biomacromolecules ; 9(11): 3223-30, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18942878

RESUMO

The effector capacity of endogenous lectins on cell adhesion/growth prompts studies to turn them into pharmaceutically stable forms. Using human galectin-2 as a proof-of-principle model, we first introduced mutations at the site of one of the two Cys residues, that is, C57A, C57M, and C57S. Only the C57M variant was expressed in bacteria in soluble form in high yield. No notable aggregation of the modified homodimeric lectin occurred during 3 weeks of storage. This mutational process also facilitated the site-directed introduction of poly(ethylene glycol) into the remaining sulfhydryl group (Cys75). Product analysis revealed rather complete conjugation with one chain per subunit in the homodimer. We note that neither the secondary structure alteration nor the absence of binding ability to a glycoprotein (asialofetuin) was observed. The results thus document the feasibility of tailoring a human galectin for enhanced stability to aggregation as well as monoPEGylation, which enables further testing of biological properties including functionality as growth regulator and the rate of serum clearance.


Assuntos
Substituição de Aminoácidos , Cisteína , Galectina 2/química , Polietilenoglicóis/química , Estabilidade Proteica , Dimerização , Galectina 2/genética , Humanos , Lectinas/química , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes , Solubilidade
16.
Biochim Biophys Acta ; 1780(4): 716-22, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18302943

RESUMO

Galectin-3 has a unique modular design. Its short N-terminal stretch can be phosphorylated, relevant for nuclear export and anti-anoikis/apoptosis activity. Enzymatic modification by casein kinase 1 at constant ATP concentration yielded mg quantities of mono- and diphosphorylated derivatives at Ser5/Ser11 in a 2:1 ratio. Their carbohydrate-inhibitable binding to asialofetuin, cell surfaces of three tumor lines, rabbit erythrocytes leading to haemagglutination and cytoplasmic sites in fixed tissue sections was not markedly altered relative to phosphate-free galectin-3. Spectroscopically, phosphorylation induced alterations in the far UV CD, indicative of an increase in ordered structure. This is accompanied by changes in the environment of aromatic amino acids signified by shifts in the near UV CD.


Assuntos
Galectina 3/química , Galectina 3/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Assialoglicoproteínas/metabolismo , Caseína Quinase I/metabolismo , Linhagem Celular Tumoral , Dicroísmo Circular , Eritrócitos/citologia , Eritrócitos/metabolismo , Fetuínas , Citometria de Fluxo , Galectina 3/genética , Humanos , Jejuno/metabolismo , Rim/metabolismo , Lactose/metabolismo , Lactose/farmacologia , Camundongos , Dados de Sequência Molecular , Mutação , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Coelhos , Serina/metabolismo , Espectrofotometria Ultravioleta , alfa-Fetoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA