Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 124: 155292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190784

RESUMO

BACKGROUND: (-)-Syringaresinol (SYR), a natural lignan with significant antioxidant and anti-inflammatory activities, possesses various pharmacological benefits including cardio-protective, antibacterial, anticancer, and anti-aging effects. It was shown that the effectiveness of (+)-syringaresinol diglucoside on the ulcerative colitis (UC) was attributed to the active metabolite (+)-syringaresinol (the enantiomor of SYR). However, the efficacy of SYR against UC remains unclear, and the associated molecular mechanism has not been revealed yet PURPOSE: This study aimed to assess the protective effect of SYR in UC and its underlying mechanism STUDY DESIGN AND METHODS: We examined SYR's protective impact on the intestinal epithelial barrier and its ability to inhibit inflammatory responses in both a lipopolysaccharide (LPS)-induced Caco-2 cell model and a dextran sodium sulfate (DSS)-induced UC mouse model. We also explored the potential signaling pathways regulated by SYR using transcriptome analysis and western blot assay RESULTS: In Caco-2 cells, SYR significantly increased trans-epithelial electrical resistance, reduced tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interferon-γ (IFN-γ), and cyclooxygenase-2 (COX-2) levels, and enhanced cellular tight junction protein expression and distribution. In mice with UC, oral treatment with SYR (10, 20, 40 mg·kg-1) dose-dependently increased body weight, colon length, and expression of tight junction proteins, decreased disease activity index score, spleen coefficient, cytokine serum levels, bacterial translocation, and intestinal damage, and also preserved the ultrastructure of colonic mucosal cells. Transcriptomics indicated that the anti-UC effect of SYR is mediated via the PI3K-Akt/MAPK/Wnt signaling pathway. CONCLUSION: In summary, SYR effectively mitigated the development of UC by enhancing the intestinal epithelial barrier function and attenuating the inflammatory response. The plant-derived product SYR might be a potentially effective therapeutical agent against UC.


Assuntos
Colite Ulcerativa , Colite , Furanos , Lignanas , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Células CACO-2 , Fosfatidilinositol 3-Quinases/metabolismo , Colo/patologia , Lignanas/farmacologia , Lignanas/uso terapêutico , Mucosa Intestinal/metabolismo , Modelos Animais de Doenças , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente
2.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255909

RESUMO

The purpose of this study was to explore the therapeutic effect of the oral administration of pseudo-ginsenoside RT4 (RT4) on ulcerative colitis (UC), and to determine the rate of absorption and distribution of RT4 in mice with UC. Balb/c mice were induced using dextran sulfate sodium salts (DSS) to establish the UC model, and 10, 20, or 40 mg/kg of RT4 was subsequently administered via gavage. The clinical symptoms, inflammatory response, intestinal barrier, content of total short-chain fatty acids (SCFAs), and gut microbiota were investigated. Caco-2 cells were induced to establish the epithelial barrier damage model using LPS, and an intervention was performed using 4, 8, and 16 µg/mL of RT4. The inflammatory factors, transient electrical resistance (TEER), and tight-junction protein expression were determined. Finally, pharmacokinetic and tissue distribution studies following the intragastric administration of RT4 in UC mice were performed. According to the results in mice, RT4 decreased the disease activity index (DAI) score, restored the colon length, reduced the levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß), and boosted the levels of immunosuppressive cytokine IL-10, increased the content of SCFAs, improved the colonic histopathology, maintained the ultrastructure of colonic mucosal epithelial cells, and corrected disturbances in the intestinal microbiota. Based on the results in caco-2 cells, RT4 reduced the levels of TNF-α, IL-6, and IL-1ß; protected integrity of monolayers; and increased tight-junction protein expression. Additionally, the main pharmacokinetic parameters (Cmax, Tmax, t1/2, Vd, CL, AUC) were obtained, the absolute bioavailability was calculated as 18.90% ± 2.70%, and the main distribution tissues were the small intestine and colon. In conclusion, RT4, with the features of slow elimination and directional distribution, could alleviate UC by inhibiting inflammatory factors, repairing the intestinal mucosal barrier, boosting the dominant intestinal microflora, and modulating the expression of SCFAs.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Ginsenosídeos , Animais , Camundongos , Humanos , Distribuição Tecidual , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Células CACO-2 , Interleucina-6 , Fator de Necrose Tumoral alfa , Citocinas , Interleucina-1beta , Camundongos Endogâmicos BALB C
3.
Biomed Pharmacother ; 149: 112823, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35334426

RESUMO

Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory disease. Aiming at assessing the effect of total saponins from American ginseng on COPD, both the chemical composition and anti-COPD activity of total saponins from wild-simulated American ginseng (TSW) and field-grown American ginseng (TSF) were investigated in this study. Firstly, a HPLC-ELSD chromatographic method was established to simultaneously determine the contents of 22 saponins in TSW and TSF. Secondly, CS-induced COPD mouse model was established to evaluate the activity of TSW and TSF. The results indicated that both TSW and TSF had the protective effect against COPD by alleviating oxidative stress and inflammatory response. TSW showed a stronger effect than TSF. Thirdly, an integrated approach involving metabolomics and network pharmacology was used to construct the "biomarker-reaction-enzyme-target" correlation network aiming at further exploring the observed effects. As the results, 15 biomarkers, 9 targets and 5 pathways were identified to play vital roles in the treatment of TSW and TSF on COPD. Fourthly, based on network pharmacology and the CS-stimulated A549 cell model, ginsenoside Rgl, Rc, oleanolic acid, notoginsenoside R1, Fe, silphioside B were certified to be the material basis for the stronger effect of TSW than TSF. Finally, the molecular docking were performed to visualize the binding modes. Our findings suggested that both TSW and TSF could effectively ameliorate the progression of COPD and might be used for the treatment of COPD.


Assuntos
Fumar Cigarros , Panax , Doença Pulmonar Obstrutiva Crônica , Saponinas , Animais , Biomarcadores/metabolismo , Metabolômica/métodos , Camundongos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Panax/química , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/prevenção & controle , Saponinas/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA