Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Nano Lett ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848322

RESUMO

Cancer immunotherapy harnesses the immune system to combat cancer, yet tumors often evade immune surveillance through immunosuppressive cells. Herein, we report an organic semiconducting sono-metallo-detonated immunobomb (SMIB) to spatiotemporally tame immunosuppressive cells in situ. SMIB consists of an amphiphilic semiconducting polymer (SP) with a repeatable thiophene-based Schiff base serving as an iron ion chelator (Fe3+). SMIB increases sonochemical activity through iron chelation and reduces immunosuppressive cell differentiation with metals and sonochemicals, thereby decreasing the irradiation dose. Upon ultrasound irradiation, SMIB acts as a sono-metallo-detonated immunobomb and inhibits Tregs via the mTOR pathway and M2 macrophage polarization through GPX4 regulation. Ultrasensitized sono-generated reactive oxygen species also promote activation of antigen-presenting cells in deep solid tumors (1 cm), resulting in cytotoxic T cell infiltration and enhanced antitumor efficacy. This platform provides a versatile approach for synergistic sono- and metalloregulation of immunosuppressive cells in situ.

2.
Angew Chem Int Ed Engl ; 63(30): e202405358, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38700137

RESUMO

Eosinophils are important immune effector cells that affect T cell-mediated antitumor immunity. However, the low frequency and restrained activity of eosinophils restricted the outcome of cancer immunotherapies. We herein report an eosinophil-activating semiconducting polymer nanoparticle (SPNe) to improve photodynamic tumor immunogenicity, modulate eosinophil chemotaxis, and reinvigorate T-cell immunity for activated cancer photo-immunotherapy. SPNe comprises an amphiphilic semiconducting polymer and a dipeptidyl peptidase 4 (DPP4) inhibitor sitagliptin via a 1O2-cleavable thioketal linker. Upon localized NIR photoirradiation, SPNe generates 1O2 to elicit immunogenic cell death of tumors and induce specific activation of sitagliptin. The subsequent inhibition of DPP4 increases intratumoral CCL11 levels to promote eosinophil chemotaxis and activation. SPNe-mediated photo-immunotherapy synergized with immune checkpoint blockade greatly promotes tumor infiltration and activation of both eosinophils and T cells, effectively inhibiting tumor growth and metastasis. Thus, this study presents a generic polymeric nanoplatform to modulate specific immune cells for precision cancer immunotherapy.


Assuntos
Eosinófilos , Imunoterapia , Nanopartículas , Polímeros , Nanopartículas/química , Polímeros/química , Polímeros/farmacologia , Camundongos , Animais , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Eosinófilos/imunologia , Semicondutores , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/patologia , Fotoquimioterapia , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia
3.
MedComm (2020) ; 5(3): e489, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469550

RESUMO

Cancer is a major cause of death globally, and traditional treatments often have limited efficacy and adverse effects. Immunotherapy has shown promise in various malignancies but is less effective in tumors with low immunogenicity or immunosuppressive microenvironment, especially sarcomas. Tertiary lymphoid structures (TLSs) have been associated with a favorable response to immunotherapy and improved survival in cancer patients. However, the immunological mechanisms and clinical significance of TLS in malignant tumors are not fully understood. In this review, we elucidate the composition, neogenesis, and immune characteristics of TLS in tumors, as well as the inflammatory response in cancer development. An in-depth discussion of the unique immune characteristics of TLSs in lung cancer, breast cancer, melanoma, and soft tissue sarcomas will be presented. Additionally, the therapeutic implications of TLS, including its role as a marker of therapeutic response and prognosis, and strategies to promote TLS formation and maturation will be explored. Overall, we aim to provide a comprehensive understanding of the role of TLS in the tumor immune microenvironment and suggest potential interventions for cancer treatment.

5.
Inflamm Res ; 73(3): 459-473, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286859

RESUMO

OBJECTIVE: Sepsis and sepsis-associated organ failure are devastating conditions for which there are no effective therapeutic agent. Several studies have demonstrated the significance of ferroptosis in sepsis. The study aimed to identify ferroptosis-related genes (FRGs) in sepsis, providing potential therapeutic targets. METHODS: The weighted gene co-expression network analysis (WGCNA) was utilized to screen sepsis-associated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to explore gene functions. Three machine learning methods were employed to identify sepsis-related hub genes. Survival and multivariate Cox regression analysis allowed further screening for the key gene RRM2 associated with prognosis. The immune infiltration analysis of the screened sepsis key genes was performed. Additionally, a cecum ligation and puncture (CLP)-induced mouse sepsis model was constructed to validate the expression of key gene in the sepsis. RESULTS: Six sepsis-associated differentially expressed FRGs (RRM2, RPL7A, HNRNPA1, PEBP1, MYL8B and TXNIP) were screened by WGCNA and three machine learning methods analysis. Survival analysis and multivariate Cox regression analysis showed that RRM2 was a key gene in sepsis and an independent prognostic factor associated with clinicopathological and molecular features of sepsis. Immune cell infiltration analysis demonstrated that RRM2 had a connection to various immune cells, such as CD4 T cells and neutrophils. Furthermore, animal experiment demonstrated that RRM2 was highly expressed in CLP-induced septic mice, and the use of Fer-1 significantly inhibited RRM2 expression, inhibited serum inflammatory factor TNF-α, IL-6 and IL-1ß expression, ameliorated intestinal injury and improved survival in septic mice. CONCLUSION: RRM2 plays an important role in sepsis and may contribute to sepsis through the ferroptosis pathway. This study provides potential therapeutic targets for sepsis.


Assuntos
Ferroptose , Ribonucleosídeo Difosfato Redutase , Sepse , Animais , Camundongos , Linfócitos T CD4-Positivos , Ceco , Modelos Animais de Doenças , Ferroptose/genética , Sepse/genética , Fator de Necrose Tumoral alfa , Ribonucleosídeo Difosfato Redutase/metabolismo
6.
Aging Dis ; 15(2): 714-738, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37548939

RESUMO

Ferroptosis, a type of cell death involving iron and lipid peroxidation, has been found to be closely associated with the development of many diseases. Mitochondria are vital components of eukaryotic cells, serving important functions in energy production, cellular metabolism, and apoptosis regulation. Presently, the precise relationship between mitochondria and ferroptosis remains unclear. In this study, we aim to systematically elucidate the mechanisms via which mitochondria regulate ferroptosis from multiple perspectives to provide novel insights into mitochondrial functions in ferroptosis. Additionally, we present a comprehensive overview of how mitochondria contribute to ferroptosis in different conditions, including cancer, cardiovascular disease, inflammatory disease, mitochondrial DNA depletion syndrome, and novel coronavirus pneumonia. Gaining a comprehensive understanding of the involvement of mitochondria in ferroptosis could lead to more effective approaches for both basic cell biology studies and medical treatments.


Assuntos
Doenças Cardiovasculares , Ferroptose , Humanos , Apoptose , Morte Celular , Mitocôndrias
7.
Adv Mater ; 35(48): e2306739, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660291

RESUMO

Real-time in vivo imaging of RNA can enhance the understanding of physio-pathological processes. However, most nucleic acid-based sensors have poor resistance to nucleases and limited photophysical properties, making them suboptimal for this purpose. To address this, a semiconducting polymer nanospherical nucleic acid probe (SENSE) for transcriptomic imaging of cancer immunity in living mice is developed. SENSE comprises a semiconducting polymer (SP) backbone covalently linked with recognition DNA strands, which are complemented by dye-labeled signal DNA strands. Upon detection of targeted T lymphocyte transcript (Gzmb: granzyme B), the signal strands are released, leading to a fluorescence enhancement correlated to transcript levels with superb sensitivity. The always-on fluorescence of the SP core also serves as an internal reference for tracking SENSE uptake in tumors. Thus, SENSE has the dual-signal channel that enables ratiometric imaging of Gzmb transcripts in the tumor of living mice for evaluating chemo-immunotherapy; moreover, it has demonstrated sensitivity and specificity comparable to flow cytometry and quantitative polymerase chain reaction,  yet offering a faster and simpler means of T cell detection in resected tumors. Therefore, SENSE represents a promising tool for in vivo RNA imaging.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Polímeros , Transcriptoma , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Sondas de Ácido Nucleico , RNA , Imagem Óptica/métodos , DNA , Imunoterapia
8.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(8): 812-817, 2023 Aug 15.
Artigo em Chinês | MEDLINE | ID: mdl-37668028

RESUMO

OBJECTIVES: To investigate the impact of the environmental layout of the neonatal intensive care unit (NICU) on clinical outcomes and neurological development in very/extremely preterm infants. METHODS: A total of 304 very/extremely preterm infants admitted to Children's Hospital of Chongqing Medical University between January 2021 and June 2022 within 24 hours after birth were included in this retrospective cohort study. Based on different environmental layouts in the NICU, the infants were divided into two groups: centralized layout group (n=157) and decentralized layout group (n=147). The clinical outcomes and Test of Infant Motor Performance (TIMP) scores at corrected gestational age between 34 to 51+6 weeks were compared between the two groups. RESULTS: The decentralized layout group had lower incidence rates of bronchopulmonary dysplasia (44.9% vs 62.4%, P<0.05) and intracranial hemorrhage (17.7% vs 28.0%, P<0.05) than the centralized layout group. The cure rate was higher in the decentralized layout group compared to the centralized layout group (68.7% vs 56.7%, P<0.05). The decentralized layout group had higher TIMP scores than the centralized layout group at corrected gestational age between 34 to 51+6 weeks (P<0.05). CONCLUSIONS: The decentralized layout of the NICU exhibits positive effects on the clinical outcomes and early neurological development compared to the centralized layout in very/extremely preterm infants.


Assuntos
Doenças do Prematuro , Unidades de Terapia Intensiva Neonatal , Humanos , Recém-Nascido , Lactente Extremamente Prematuro , Recém-Nascido de muito Baixo Peso , Estudos Retrospectivos
9.
MedComm (2020) ; 4(5): e369, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37731946

RESUMO

Soft tissue sarcoma (STS) is an uncommon malignancy that often carries a grim prognosis. Trophinin-associated protein (TROAP) is augmented in a variety of tumors and can affect tumor proliferation. Nevertheless, the prognostic value and specific functions of TROAP in STS are still vague. Herein, we display that TROAP exhibits an augmented trend in STS, and its elevation correlates with a poor prognosis of STS. Furthermore, its reduction is related to increased immune cell infiltration, enhanced stroma, and elevation of immune activation. Meanwhile, the TROAP-derived genomic signature is validated to predict patient prognosis, immunotherapy, and drug response reliably. A nomogram constructed based on age, metastatic status, and a TROAP-derived risk score of an STS individual could be used to quantify the survival probability of STS. In addition, in vitro experiments have demonstrated that TROAP is overexpressed in STS, and the downregulation of TROAP could affect the proliferation, migration, metastasis, and cell cycle of STS cells. In summary, the TROAP expression is elevated in STS tissues and cells, which is related to the poor prognosis and malignant biological behaviors of STS. It could act as a potential prognostic biomarker for diagnosis and treatment of STS.

10.
Angew Chem Int Ed Engl ; 62(43): e202310178, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37671691

RESUMO

Sono-immunotherapy holds great potential for deep tumor inhibition; however, smart sono-therapeutic agents to simultaneously eliminate 'domestic' tumor cells and regulate the 'community' tumor immune microenvironment have rarely been developed. Herein, we report a spatiotemporally controllable semiconducting iron-chelated nano-metallomodulator (SINM) for hypersensitive sono-metallo-immunotherapy of cancer. SINM consists of a semiconducting polymer (SP) backbone chelating iron ions (Fe3+ ) with thiophene-based Schiff base structure, and a hydrophilic side chain. Upon accumulation in tumors after systemic administration, SINM specifically arouses ferroptosis and M1 macrophage polarization due to its response toward the tumor redox environment; meanwhile, the chelation of Fe3+ enhances the sono-sensitizing effect of SPs, leading to enhanced generation of reactive oxygen species for immunogenic cell death. Such combined sonodynamic metallo-immunotherapy of SINM efficiently ablates deep tumor and spatiotemporally regulates immunophenotypes.


Assuntos
Quelantes de Ferro , Neoplasias , Humanos , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Fatores Imunológicos , Adjuvantes Imunológicos , Neoplasias/tratamento farmacológico , Imunoterapia , Ferro , Linhagem Celular Tumoral , Microambiente Tumoral
11.
Heliyon ; 9(8): e18840, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37636355

RESUMO

Objective: To conduct a bibliometric analysis of literature on hemorrhagic shock published between 2000 and 2021 with the help of Citespace to explore the current status, hotspots and research trends in this regard, with the results presented in a visualized manner. Methods: The data over the past 22 years were retrieved from the Web of Science (WOS) Core Collection database and downloaded as the "Full Record and Cited References". Cooperative analysis, cluster analysis, co-citation analysis, and burst analysis were performed based on the data on countries/regions, institutions, journals, authors, and keywords through Citespace. Results: A total of 2027 articles were retrieved. The number of annual publications fluctuated but was generally on an upward trend. The United States stands out as the most productive country (989 articles), the University of Pittsburgh the most productive publishing institution (109 articles), SHOCK the most cited journal (1486 articles), TAO LI the most productive author (40 articles), DEITCH EA the most cited author (261 times of citation), hemorrhagic shock the most frequent keyword (725 times of occurrence), and "traumatic brain injury" the most covered article in keyword clustering (29 articles). The burst analysis revealed Harvard University as the institution with the highest strength value and the Journal of Trauma and Acute Care Surgery the most important journal. It was also concluded that HASAN B ALAM, AARON M WILLIAMS, and LIMIN ZHANG may continue to publish high-quality articles in the future. In the meanwhile, both "protect" and "transfusion" were considered the hotspots and trends in current research. Conclusions: The United States has been a major contributor to the publication of the articles over the past 22 years, with the most productive publishing institution, the most cited journal, and the most cited author all coming from the US. Hemorrhagic shock, injury, resuscitation, trauma, models, activation, expression, fluid resuscitation, rats, and nitric oxide are hot topics in relevant research. According to the keyword burst analysis, the areas related to "protect" and "transfusion" may rise as the research directions in the future. However, since the hotspots in the research of hemorrhagic shock are short-lived and fast-changing, the researchers should pay more attention to the development trend in this field.

12.
Front Immunol ; 14: 1190210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469511

RESUMO

Low-grade myofibroblastic sarcoma (LGMS) characterized by the increased proliferation of myofibroblasts is a rare type of malignant myofibroblastic tumor that frequently occurs in the head and neck region. Presently, there is no consensus regarding the treatment of LGMS. Here, we report a rare case of LGMS of the pharynx in a 40-year-old male admitted to our hospital. The patient underwent resection for a right metastatic lesion and parapharyngeal mass. However, he had recurrence and multiple metastases without a surgical indication. Then the patient received the treatment of anlotinib plus pembrolizumab for 4 cycles, and there was a partial response (PR) to the treatment. Due to the adverse reaction of anlotinib, the patient subsequently received monotherapy of pembrolizumab for 22 cycles and achieved a complete response (CR). As the first case report of the immunotherapy for LGMS, our study highlights that this strategy may be of great significance to the treatment of LGMS.


Assuntos
Fibrossarcoma , Faringe , Masculino , Humanos , Adulto , Fibrossarcoma/patologia , Miofibroblastos/patologia , Pescoço/patologia , Imunoterapia
13.
MedComm (2020) ; 4(4): e317, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37457661

RESUMO

Although great advances have been made over the past decades, therapeutics for osteosarcoma are quite limited. We performed long-read RNA sequencing and tandem mass tag (TMT)-based quantitative proteome on osteosarcoma and the adjacent normal tissues, next-generation sequencing (NGS) on paired osteosarcoma samples before and after neoadjuvant chemotherapy (NACT), and high-throughput drug combination screen on osteosarcoma cell lines. Single-cell RNA sequencing data were analyzed to reveal the heterogeneity of potential therapeutic target genes. Additionally, we clarified the synergistic mechanisms of doxorubicin (DOX) and HDACs inhibitors for osteosarcoma treatment. Consequently, we identified 2535 osteosarcoma-specific genes and several alternative splicing (AS) events with osteosarcoma specificity and/or patient heterogeneity. Hundreds of potential therapeutic targets were identified among them, which showed the core regulatory roles in osteosarcoma. We also identified 215 inhibitory drugs and 236 synergistic drug combinations for osteosarcoma treatment. More interestingly, the multiomic analysis pointed out the pivotal role of HDAC1 and TOP2A in osteosarcoma. HDAC inhibitors synergized with DOX to suppress osteosarcoma both in vitro and in vivo. Mechanistically, HDAC inhibitors synergized with DOX by downregulating SP1 to transcriptionally modulate TOP2A expression. This study provided a comprehensive view of molecular features, therapeutic targets, and synergistic drug combinations for osteosarcoma.

14.
Am J Perinatol ; 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516120

RESUMO

OBJECTIVE: Bronchopulmonary dysplasia is a chronic lung disease in premature infants with alveolar simplification and pulmonary vascular development disorder as the main pathological feature and hyperoxia as the main etiology. Autophagy is a highly conserved cytological behavior of self-degrading cellular components and is accompanied by oxidative stress. Studies have reported that autophagy is regulated by FOXO1 posttranslational modification. However, whether autophagy can be involved in the regulation of endothelial cell injury induced by hyperoxia and its mechanism are still unclear. STUDY DESIGN: We have activated and inhibited autophagy in human umbilical vein endothelial cells under hyperoxia and verified the role of autophagy in endothelial cell-related functions from both positive and negative aspects. RESULTS: Our research showed that the expression level of autophagy-related proteins decreased, accompanied by decreased cell migration ability and tube formation ability and increased cell reactive oxygen species level and cell permeability under hyperoxia conditions. Using an autophagy agonist alleviated hyperoxia-induced changes and played a protective role. However, inhibition of autophagy aggravated the cell damage induced by hyperoxia. Moreover, the decrease in autophagy proteins was accompanied by the upregulation of FOXO1 phosphorylation and acetylation. CONCLUSION: We concluded that autophagy was a protective mechanism against endothelial cell injury caused by hyperoxia. Autophagy might participate in this process by coregulating posttranslational modifications of FOXO1. KEY POINTS: · Hyperoxia induces vascular endothelial cell injury.. · Autophagy may has a protective role under hyperoxia conditions.. · FOXO1 posttranslational modification may be involved in the regulation of autophagy..

15.
Front Immunol ; 14: 1178436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377953

RESUMO

Background: Soft tissue sarcoma (STS) is a class of malignant tumors originating from mesenchymal stroma with a poor prognosis. Accumulating evidence has proved that angiogenesis is an essential hallmark of tumors. Nevertheless, there is a paucity of comprehensive research exploring the association of angiogenesis-related genes (ARGs) with STS. Methods: The ARGs were extracted from previous literature, and the differentially expressed ARGs were screened for subsequent analysis. Next, the least absolute shrinkage and selection operator (LASSO) and Cox regression analyses were conducted to establish the angiogenesis-related signature (ARSig). The predictive performance of the novel ARSig was confirmed using internal and external validation, subgroup survival, and independent analysis. Additionally, the association of the ARSig with the tumor immune microenvironment, tumor mutational burden (TMB), and therapeutic response in STS were further investigated. Notably, we finally conducted in vitro experiments to verify the findings from the bioinformatics analysis. Results: A novel ARSig is successfully constructed and validated. The STS with a lower ARSig risk score in the training cohort has an improved prognosis. Also, consistent results were observed in the internal and external cohorts. The receiver operating characteristic (ROC) curve, subgroup survival, and independent analysis further indicate that the novel ARSig is a promising independent prognostic predictor for STS. Furthermore, it is proved that the novel ARSig is relevant to the immune landscape, TMB, immunotherapy, and chemotherapy sensitivity in STS. Encouragingly, we also validate that the signature ARGs are significantly dysregulated in STS, and ARDB2 and SRPK1 are closely connected with the malignant progress of STS cells. Conclusion: In sum, we construct a novel ARSig for STS, which could act as a promising prognostic factor for STS and give a strategy for future clinical decisions, immune landscape, and personalized treatment of STS.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Prognóstico , Sarcoma/genética , Fenômenos Fisiológicos Cardiovasculares , Biologia Computacional , Microambiente Tumoral/genética , Proteínas Serina-Treonina Quinases
16.
Angew Chem Int Ed Engl ; 62(32): e202307272, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37312610

RESUMO

The efficacy of combination immunotherapy has been limited by tumor specificity and immune-related adverse events (irAEs). Herein, we report the development of polymeric STING pro-agonists (PSPA), whose sono-immunotherapeutic efficacy is activated by sono-irradiation and elevated glutathione (GSH) within the tumor microenvironment (TME). PSPA is composed of sonosensitizers (semiconducting polymer) and STING agonists (MSA-2) via the GSH-activatable linkers. Under sono-irradiation, PSPA serves as a sonosensitizer to generate 1 O2 and induce immunogenic cell death (ICD) of malignant tumor cells. Furthermore, MSA-2 is released specifically in tumor microenvironment with highly expressed GSH, minimizing off-target side effects. The activation of the STING pathway elevates the interferon-ß level and synergizes with SDT to enhance the anti-tumor response. Therefore, this work proposes a universal approach for spatiotemporal regulation of cancer sono-immunotherapy.


Assuntos
Glutationa , Neoplasias , Humanos , Morte Celular Imunogênica , Imunoterapia , Polímeros , Microambiente Tumoral , Neoplasias/terapia , Linhagem Celular Tumoral
17.
ACS Nano ; 17(9): 8183-8194, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37122103

RESUMO

Photothermal immunotherapy is a combinational cancer therapy modality, wherein the photothermal process can noninvasively ablate cancer and efficiently trigger cancer immunogenic cell death to ignite antitumor immunity. However, cancer cells can resist the cytotoxic lymphocyte-mediated antitumor effect via expressing serine protease inhibitory proteins (serpins) to deactivate proteolytic immunoproteases. Herein, we report a smart polymer nanoagonist (SPND) with second near-infrared (NIR-II) phototherapeutic ablation and tumor-specific immunoprotease granzyme B (GrB) restimulation for cancer photothermal immunotherapy. SPND has a semiconducting polymer backbone grafted with a small-molecule inhibitor of serpinB9 (Sb9i) via a glutathione (GSH)-cleavable linker. Once in the tumor, Sb9i can be specifically liberated from SPND to inhibit serpinB9, restimulating the activity of GrB to enhance cancer immunotherapy. Moreover, SPND induces photothermal therapy for direct tumor ablation and immunogenic cancer cell death (ICD) under NIR-II photoirradiation. Therefore, such a smart nanoagonist represents a way toward combination photothermal immunotherapy (PTI).


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Fototerapia , Neoplasias/terapia , Antineoplásicos/farmacologia , Terapia Fototérmica , Imunoterapia , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral
18.
Front Genet ; 14: 1161791, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065471

RESUMO

Background: Soft tissue sarcoma (STS) is a highly malignant tumor with a dismal prognosis. Presently, the dysregulation of fatty acid metabolism has received increasing attention in tumor research, but fewer reports are relevant to STS. Methods: Based on fatty acid metabolism-related genes (FRGs), a novel risk score for STS was developed utilizing univariate analysis and least absolute shrinkage selection operator (LASSO) Cox regression analyses in the STS cohort, which were further validated using the external validation cohort from other databases. Furthermore, independent prognostic analysis, C-index, ROC curves, and nomogram were carried out to investigate the predictive performance of fatty acid-related risk scores. We also analysed the differences in enrichment pathways, the immune microenvironment, gene mutations, and immunotherapy response between the two distinct fatty acid score groups. Moreover, the real-time quantitative polymerase chain reaction (RT-qPCR) was used to further verify the expression of FRGs in STS. Results: A total of 153 FRGs were retrieved in our study. Next, a novel fatty acid metabolism-related risk score (FAS) was constructed based on 18 FRGs. The predictive performance of FAS was also verified in external cohorts. In addition, the independent analysis, C-index, ROC curve, and nomograph also revealed that FAS could serve as an independent prognostic factor for the STS patients. Meanwhile, our results demonstrated that the STS cohort in two distinct FAS groups had different copy number variations, immune cell infiltration, and immunotherapy responses. Finally, the in vitro validation results demonstrated that several FRGs included in the FAS exhibited abnormal expression in STS. Conclusion: Altogether, our work comprehensively and systematically clarifies fatty acid metabolism's potential roles and clinical significance in STS. The novel individualized score based on fatty acid metabolism may be provided as a potential marker and treatment strategy in STS.

19.
MedComm (2020) ; 4(3): e255, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37090118

RESUMO

Regulated pyroptosis is critical for pathogen elimination by inducing infected cell rupture and pro-inflammatory cytokines secretion, while overwhelmed pyroptosis contributes to organ dysfunction and pathological inflammatory response. Caffeic acid (CA) and ferulic acid (FA) are both well-known antioxidant and anti-inflammatory phenolic acids, which resemble in chemical structure. Here we found that CA, but not FA, protects macrophages from both Nigericin-induced canonical and cytosolic lipopolysaccharide (LPS)-induced non-canonical pyroptosis and alleviates LPS-induced mice sepsis. It significantly improved the survival of pyroptotic cells and LPS-challenged mice and blocked proinflammatory cytokine secretion. The anti-pyroptotic effect of CA is independent of its regulations in cellular lipid peroxidation, mitochondrial function, or pyroptosis-associated gene transcription. Instead, CA arrests pyroptosis by directly associating with gasdermin D (GSDMD) and blocking its processing, resulting in reduced N-GSDMD pore construction and less cellular content release. In LPS-induced septic mice, CA inhibits GSDMD activation in peritoneal macrophages and reduces the serum levels of interleukin-1ß and tumor necrosis factor-α as the known pyroptosis inhibitors, disulfiram and dimethyl fumarate. Collectively, these findings suggest that CA inhibits pyroptosis by targeting GSDMD and is a potential candidate for curbing the pyroptosis-associated disease.

20.
Angew Chem Int Ed Engl ; 62(26): e202301625, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099322

RESUMO

NETosis, the peculiar type of neutrophil death, plays important roles in pro-tumorigenic functions and inhibits cancer immunotherapy. Non-invasive real-time imaging is thus imperative for prognosis of cancer immunotherapy yet remains challenging. Herein, we report a Tandem-locked NETosis Reporter 1 (TNR1 ) that activates fluorescence signals only in the presence of both neutrophil elastase (NE) and cathepsin G (CTSG) for the specific imaging of NETosis. In the aspect of molecular design, the sequence of biomarker-specific tandem peptide blocks can largely affect the detection specificity towards NETosis. In live cell imaging, the tandem-locked design allows TNR1 to differentiate NETosis from neutrophil activation, while single-locked reporters fail to do so. The near-infrared signals from activated TNR1 in tumor from living mice were consistent with the intratumoral NETosis levels from histological results. Moreover, the near-infrared signals from activated TNR1 negatively correlated with tumor inhibition effect after immunotherapy, thereby providing prognosis for cancer immunotherapy. Thus, our study not only demonstrates the first sensitive optical reporter for noninvasive monitoring of NETosis levels and evaluation of cancer immunotherapeutic efficacy in tumor-bearing living mice, but also proposes a generic approach for tandem-locked probe design.


Assuntos
Armadilhas Extracelulares , Neoplasias , Animais , Camundongos , Armadilhas Extracelulares/fisiologia , Neutrófilos/fisiologia , Biomarcadores , Corantes , Prognóstico , Imunoterapia , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA