Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 236(4): 1422-1440, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36068953

RESUMO

Rice false smut caused by Ustilaginoidea virens is becoming one of the most recalcitrant rice diseases worldwide. However, the molecular mechanisms underlying rice immunity against U. virens remain unknown. Using genetic, biochemical and disease resistance assays, we demonstrated that the xb24 knockout lines generated in non-Xa21 rice background exhibit an enhanced susceptibility to the fungal pathogens U. virens and Magnaporthe oryzae. Consistently, flg22- and chitin-induced oxidative burst and expression of pathogenesis-related genes in the xb24 knockout lines were greatly attenuated. As a central mediator of energy signaling, SnRK1A interacts with and phosphorylates XB24 at Thr83 residue to promote ATPase activity. SnRK1A is activated by pathogen-associated molecular patterns and positively regulates plant immune responses and disease resistance. Furthermore, the virulence effector SCRE1 in U. virens targets host ATPase XB24. The interaction inhibits ATPase activity of XB24 by blocking ATP binding to XB24. Meanwhile, SCRE1 outcompetes SnRK1A for XB24 binding, and thereby suppresses SnRK1A-mediated phosphorylation and ATPase activity of XB24. Our results indicate that the conserved SnRK1A-XB24 module in multiple crop plants positively contributes to plant immunity and uncover an unidentified molecular strategy to promote infection in U. virens and a novel host target in fungal pathogenesis.


Assuntos
Oryza , Oryza/metabolismo , Adenosina Trifosfatases/metabolismo , Fosforilação , Doenças das Plantas/microbiologia , Resistência à Doença , Moléculas com Motivos Associados a Patógenos/metabolismo , Quitina/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Nat Commun ; 12(1): 7303, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911942

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs), including salicylic acid (SA), target mammalian cyclooxygenases. In plants, SA is a defense hormone that regulates NON-EXPRESSOR OF PATHOGENESIS RELATED GENES 1 (NPR1), the master transcriptional regulator of immunity-related genes. We identify that the oxicam-type NSAIDs tenoxicam (TNX), meloxicam, and piroxicam, but not other types of NSAIDs, exhibit an inhibitory effect on immunity to bacteria and SA-dependent plant immune response. TNX treatment decreases NPR1 levels, independently from the proposed SA receptors NPR3 and NPR4. Instead, TNX induces oxidation of cytosolic redox status, which is also affected by SA and regulates NPR1 homeostasis. A cysteine labeling assay reveals that cysteine residues in NPR1 can be oxidized in vitro, leading to disulfide-bridged oligomerization of NPR1, but not in vivo regardless of SA or TNX treatment. Therefore, this study indicates that oxicam inhibits NPR1-mediated SA signaling without affecting the redox status of NPR1.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Piroxicam/análogos & derivados , Ácido Salicílico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Meloxicam/farmacologia , Piroxicam/farmacologia
3.
Plant Physiol ; 184(2): 792-805, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32759268

RESUMO

Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (Las), is one of the most destructive citrus diseases worldwide, yet how Las causes HLB is poorly understood. Here we show that a Las-secreted protein, SDE15 (CLIBASIA_04025), suppresses plant immunity and promotes Las multiplication. Transgenic expression of SDE15 in Duncan grapefruit (Citrus × paradisi) suppresses the hypersensitive response induced by Xanthomonas citri ssp. citri (Xcc) and reduces the expression of immunity-related genes. SDE15 also suppresses the hypersensitive response triggered by the Xanthomonas vesicatoria effector protein AvrBsT in Nicotiana benthamiana, suggesting that it may be a broad-spectrum suppressor of plant immunity. SDE15 interacts with the citrus protein CsACD2, a homolog of Arabidopsis (Arabidopsis thaliana) ACCELERATED CELL DEATH 2 (ACD2). SDE15 suppression of plant immunity is dependent on CsACD2, and overexpression of CsACD2 in citrus suppresses plant immunity and promotes Las multiplication, phenocopying overexpression of SDE15. Identification of CsACD2 as a susceptibility target has implications in genome editing for novel plant resistance against devastating HLB.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Arabidopsis/fisiologia , Proteínas de Bactérias/fisiologia , Citrus sinensis/imunologia , Interações Hospedeiro-Patógeno/imunologia , Liberibacter/fisiologia , Oxirredutases/fisiologia , Proteínas de Bactérias/isolamento & purificação , Citrus sinensis/metabolismo , Imunidade Vegetal , Plantas Geneticamente Modificadas
4.
Plant Cell ; 32(3): 595-611, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31888968

RESUMO

A hallmark of multicellular organisms is their ability to maintain physiological homeostasis by communicating among cells, tissues, and organs. In plants, intercellular communication is largely dependent on plasmodesmata (PD), which are membrane-lined channels connecting adjacent plant cells. Upon immune stimulation, plants close PD as part of their immune responses. Here, we show that the bacterial pathogen Pseudomonas syringae deploys an effector protein, HopO1-1, that modulates PD function. HopO1-1 is required for P. syringae to spread locally to neighboring tissues during infection. Expression of HopO1-1 in Arabidopsis (Arabidopsis thaliana) increases the distance of PD-dependent molecular flux between neighboring plant cells. Being a putative ribosyltransferase, the catalytic activity of HopO1-1 is required for regulation of PD. HopO1-1 physically interacts with and destabilizes the plant PD-located protein PDLP7 and possibly PDLP5. Both PDLPs are involved in bacterial immunity. Our findings reveal that a pathogenic bacterium utilizes an effector to manipulate PD-mediated host intercellular communication for maximizing the spread of bacterial infection.


Assuntos
Arabidopsis/microbiologia , Plasmodesmos/microbiologia , Pseudomonas syringae/crescimento & desenvolvimento , Pseudomonas syringae/patogenicidade , Adenosina Difosfato Ribose/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Imunidade Vegetal , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Transporte Proteico , Pseudomonas syringae/imunologia , Virulência
5.
Methods Mol Biol ; 2085: 133-144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31734922

RESUMO

In the jasmonate signaling pathway, a region of 17 amino acids within the Jas motif of JAZ proteins and a conserved region within the N-terminus of MYC proteins are sufficient for JAZ-MYC interactions. Crystal structures of Jas-MYC complexes have revealed the structural basis of this important interaction. Here, we describe methods of cloning, expression, and purification of MYC N-terminal proteins and their co-crystallization with Jas motif peptides.


Assuntos
Cristalização , Complexos Multiproteicos/química , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Repressoras/química , Proteínas Repressoras/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Clonagem Molecular , Expressão Gênica , Complexos Multiproteicos/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Repressoras/metabolismo
6.
Methods Mol Biol ; 1531: 141-153, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27837488

RESUMO

Animal and plant pathogenic bacteria use type III secretion systems to translocate proteinaceous effectors to subvert innate immunity of their host organisms. Type III secretion/effector systems are a crucial pathogenicity factor in many bacterial pathogens of plants and animals. Pseudomonas syringae pv. tomato (Pst) DC3000 injects a total of 36 protein effectors that target a variety of host proteins. Studies of a subset of Pst DC3000 effectors demonstrated that bacterial effectors, once inside the host cell, are localized to different subcellular compartments, including plasma membrane, cytoplasm, mitochondria, chloroplast, and Trans-Golgi network, to carry out their virulence functions. Identifying the subcellular localization of bacterial effector proteins in host cells could provide substantial clues to understanding the molecular and cellular basis of the virulence activities of effector proteins. In this chapter, we present methods for transient or stable expression of bacterial effector proteins in tobacco and/or Arabidopsis thaliana for live cell imaging as well as confirming the subcellular localization in plants using fluorescent organelle markers or chemical treatment.


Assuntos
Proteínas de Bactérias/metabolismo , Pseudomonas syringae/metabolismo , Solanum lycopersicum/microbiologia , Proteínas de Bactérias/genética , Expressão Gênica , Genes Reporter , Interações Hospedeiro-Patógeno/imunologia , Espaço Intracelular/metabolismo , Solanum lycopersicum/imunologia , Microscopia Confocal , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Transporte Proteico , Pseudomonas syringae/genética , Nicotiana/microbiologia , Transformação Genética , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
7.
Plant Physiol ; 171(3): 2239-55, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27217495

RESUMO

The plant cytoskeleton underpins the function of a multitude of cellular mechanisms, including those associated with developmental- and stress-associated signaling processes. In recent years, the actin cytoskeleton has been demonstrated to play a key role in plant immune signaling, including a recent demonstration that pathogens target actin filaments to block plant defense and immunity. Herein, we quantified spatial changes in host actin filament organization after infection with Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), demonstrating that the type-III effector HopG1 is required for pathogen-induced changes to actin filament architecture and host disease symptom development during infection. Using a suite of pathogen effector deletion constructs, coupled with high-resolution microscopy, we found that deletion of hopG1 from Pst DC3000 resulted in a reduction in actin bundling and a concomitant increase in the density of filament arrays in Arabidopsis, both of which correlate with host disease symptom development. As a mechanism underpinning this activity, we further show that the HopG1 effector interacts with an Arabidopsis mitochondrial-localized kinesin motor protein. Kinesin mutant plants show reduced disease symptoms after pathogen infection, which can be complemented by actin-modifying agents. In total, our results support a model in which HopG1 induces changes in the organization of the actin cytoskeleton as part of its virulence function in promoting disease symptom development.


Assuntos
Actinas/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Bactérias/genética , Citoesqueleto/metabolismo , Teste de Complementação Genética , Interações Hospedeiro-Patógeno , Cinesinas/metabolismo , Mutação , Nicotiana/genética
8.
Plant Physiol ; 171(2): 1427-42, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208272

RESUMO

The WRKY family of transcription factors (TFs) functions as transcriptional activators or repressors in various signaling pathways. In this study, we discovered that OsWRKY62 and OsWRKY76, two genes of the WRKY IIa subfamily, undergo constitutive and inducible alternative splicing. The full-length OsWRKY62.1 and OsWRKY76.1 proteins formed homocomplexes and heterocomplexes, and the heterocomplex dominates in the nuclei when analyzed in Nicotiana benthamiana leaves. Transgenic overexpression of OsWRKY62.1 and OsWRKY76.1 in rice (Oryza sativa) enhanced plant susceptibility to the blast fungus Magnaporthe oryzae and the leaf blight bacterium Xanthomonas oryzae pv oryzae, whereas RNA interference and loss-of-function knockout plants exhibited elevated resistance. The dsOW62/76 and knockout lines of OsWRKY62 and OsWRKY76 also showed greatly increased expression of defense-related genes and the accumulation of phytoalexins. The ratio of full-length versus truncated transcripts changed in dsOW62/76 plants as well as in response to pathogen infection. The short alternative OsWRKY62.2 and OsWRKY76.2 isoforms could interact with each other and with full-length proteins. OsWRKY62.2 showed a reduced repressor activity in planta, and two sequence determinants required for the repressor activity were identified in the amino terminus of OsWRKY62.1. The amino termini of OsWRKY62 and OsWRKY76 splice variants also showed reduced binding to the canonical W box motif. These results not only enhance our understanding of the DNA-binding property, the repressor sequence motifs, and the negative feedback regulation of the IIa subfamily of WRKYs but also provide evidence for alternative splicing of WRKY TFs during the plant defense response.


Assuntos
Processamento Alternativo/genética , Genes de Plantas , Oryza/genética , Oryza/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Processamento Alternativo/efeitos dos fármacos , Ciclopentanos/farmacologia , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Inativação de Genes , Magnaporthe/efeitos dos fármacos , Magnaporthe/fisiologia , Mutação/genética , Oryza/microbiologia , Oxilipinas/farmacologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Doenças das Plantas/genética , Imunidade Vegetal/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Xanthomonas/efeitos dos fármacos , Xanthomonas/fisiologia
9.
Science ; 343(6178): 1509-12, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24625928

RESUMO

Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Pseudomonas syringae/patogenicidade , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas de Arabidopsis/agonistas , Peptídeos/metabolismo , Peptídeos/farmacologia , Fosforilação , Pseudomonas syringae/enzimologia , Receptores de Reconhecimento de Padrão/agonistas , Tirosina/metabolismo
10.
New Phytol ; 202(1): 259-269, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24372399

RESUMO

Successful pathogens counter immunity at multiple levels, mostly through the action of effectors. Pseudomonas syringae secretes c. 30 effectors, some of which have been shown to inhibit plant immunity triggered upon perception of conserved pathogen-associated molecular patterns (PAMPs). One of these is HopM1, which impairs late immune responses through targeting the vesicle trafficking-related AtMIN7 for degradation. Here, we report that in planta expressed HopM1 suppresses two early PAMP-triggered responses, the oxidative burst and stomatal immunity, both of which seem to require proteasomal function but are independent of AtMIN7. Notably, a 14-3-3 protein, GRF8/AtMIN10, was found previously to be a target of HopM1 in vivo, and expression of HopM1 mimics the effect of chemically and genetically disrupting 14-3-3 function. Our data further show that the function of 14-3-3 proteins is required for PAMP-triggered oxidative burst and stomatal immunity, and chemical-mediated disruption of the 14-3-3 interactions with their client proteins restores virulence of a HopM1-deficient P. syringae mutant, providing a link between HopM1 and the involvement of 14-3-3 proteins in plant immunity. Taken together, these results unveil the impact of HopM1 on the PAMP-triggered oxidative burst and stomatal immunity in an AtMIN7-independent manner, most likely acting at the function of (a) 14-3-3 protein(s).


Assuntos
Proteínas de Bactérias/metabolismo , Imunidade Vegetal , Estômatos de Plantas/imunologia , Pseudomonas syringae/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Explosão Respiratória , Proteínas 14-3-3/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/efeitos dos fármacos , Flagelina/farmacologia , Técnicas de Silenciamento de Genes , Leupeptinas/farmacologia , Solanum lycopersicum/metabolismo , Estômatos de Plantas/microbiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/metabolismo
11.
BMC Plant Biol ; 11: 125, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21896186

RESUMO

BACKGROUND: Systemic Acquired Resistance (SAR) is an induced resistance response to pathogens, characterized by the translocation of a long-distance signal from induced leaves to distant tissues to prime them for increased resistance to future infection. DEFECTIVE in INDUCED RESISTANCE 1 (DIR1) has been hypothesized to chaperone a small signaling molecule to distant tissues during SAR in Arabidopsis. RESULTS: DIR1 promoter:DIR1-GUS/dir1-1 lines were constructed to examine DIR1 expression. DIR1 is expressed in seedlings, flowers and ubiquitously in untreated or mock-inoculated mature leaf cells, including phloem sieve elements and companion cells. Inoculation of leaves with SAR-inducing avirulent or virulent Pseudomonas syringae pv tomato (Pst) resulted in Type III Secretion System-dependent suppression of DIR1 expression in leaf cells. Transient expression of fluorescent fusion proteins in tobacco and intercellular washing fluid experiments indicated that DIR1's ER signal sequence targets it for secretion to the cell wall. However, DIR1 expressed without a signal sequence rescued the dir1-1 SAR defect, suggesting that a cytosolic pool of DIR1 is important for the SAR response. CONCLUSIONS: Although expression of DIR1 decreases during SAR induction, the protein localizes to all living cell types of the vasculature, including companion cells and sieve elements, and therefore DIR1 is well situated to participate in long-distance signaling during SAR.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Proteínas de Transporte/metabolismo , Resistência à Doença , Imunidade Vegetal , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Parede Celular/metabolismo , Proteínas de Ligação a Ácido Graxo , Regulação da Expressão Gênica de Plantas , Genes Reporter , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia , Regiões Promotoras Genéticas , Pseudomonas syringae/patogenicidade , RNA de Plantas/genética , Plântula/genética , Plântula/imunologia , Plântula/microbiologia , Nicotiana
12.
Science ; 313(5784): 220-3, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16840699

RESUMO

Plants have evolved a powerful immune system to defend against infection by most microbial organisms. However, successful pathogens, such as Pseudomonas syringae, have developed countermeasures and inject virulence proteins into the host plant cell to suppress immunity and cause devastating diseases. Despite intensive research efforts, the molecular targets of bacterial virulence proteins that are important for plant disease development have remained obscure. Here, we show that a conserved P. syringae virulence protein, HopM1, targets an immunity-associated protein, AtMIN7, in Arabidopsis thaliana. HopM1 mediates the destruction of AtMIN7 via the host proteasome. Our results illustrate a strategy by which a bacterial pathogen exploits the host proteasome to subvert host immunity and causes infection in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Fatores de Virulência/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brefeldina A/farmacologia , Glucanos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Imunidade Inata , Mutação , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico , Pseudomonas syringae/genética , Pseudomonas syringae/crescimento & desenvolvimento , Nicotiana/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitinas/metabolismo , Fatores de Virulência/genética
13.
J Biol Chem ; 280(22): 21409-17, 2005 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-15797867

RESUMO

The Hrp pilus plays an essential role in the long-distance type III translocation of effector proteins from bacteria into plant cells. HrpA is the structural subunit of the Hrp pilus in Pseudomonas syringae pv. tomato (Pst) DC3000. Little is known about the molecular features in the HrpA protein for pilus assembly or for transporting effector proteins. From previous collections of nonfunctional HrpA derivatives that carry random pentapeptide insertions or single amino acid mutations, we identified several dominant-negative mutants that blocked the ability of wild-type Pst DC3000 to elicit host responses. The dominant-negative phenotype was correlated with the disappearance of the Hrp pilus in culture and inhibition of wild-type HrpA protein self-assembly in vitro. Dominant-negative HrpA mutants can be grouped into two functional classes: one class exerted a strong dominant-negative effect on the secretion of effector proteins AvrPto and HopPtoM in culture, and the other did not. The two classes of mutant HrpA proteins carry pentapeptide insertions in discrete regions, which are interrupted by insertions without a dominant-negative effect. These results enable prediction of possible subunit-subunit interaction sites in the assembly of the Hrp pilus and suggest the usefulness of dominant-negative mutants in dissection of the role of the wild-type HrpA protein in various stages of type III translocation: protein exit across the bacterial cell wall, the assembly and/or stabilization of the Hrp pilus in the extracellular space, and Hrp pilus-mediated long-distance transport beyond the bacterial cell wall.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Mutação , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Parede Celular/metabolismo , RNA Helicases DEAD-box , Genes Dominantes , Immunoblotting , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Peptídeos/química , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA