Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2673, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562374

RESUMO

The folded mitochondria inner membrane-cristae is the structural foundation for oxidative phosphorylation (OXPHOS) and energy production. By mechanically simulating mitochondria morphogenesis, we speculate that efficient sculpting of the cristae is organelle non-autonomous. It has long been inferred that folding requires buckling in living systems. However, the tethering force for cristae formation and regulation has not been identified. Combining electron tomography, proteomics strategies, super resolution live cell imaging and mathematical modeling, we reveal that the mitochondria localized actin motor-myosin 19 (Myo19) is critical for maintaining cristae structure, by associating with the SAM-MICOS super complex. We discover that depletion of Myo19 or disruption of its motor activity leads to altered mitochondria membrane potential and decreased OXPHOS. We propose that Myo19 may act as a mechanical tether for effective ridging of the mitochondria cristae, thus sustaining the energy homeostasis essential for various cellular functions.


Assuntos
Membranas Mitocondriais , Fosforilação Oxidativa , Actinas/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Miosinas/metabolismo
2.
Nat Methods ; 17(9): 937-946, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32778831

RESUMO

Genetically encoded tags for single-molecule imaging in electron microscopy (EM) are long-awaited. Here, we report an approach for directly synthesizing EM-visible gold nanoparticles (AuNPs) on cysteine-rich tags for single-molecule visualization in cells. We first uncovered an auto-nucleation suppression mechanism that allows specific synthesis of AuNPs on isolated tags. Next, we exploited this mechanism to develop approaches for single-molecule detection of proteins in prokaryotic cells and achieved an unprecedented labeling efficiency. We then expanded it to more complicated eukaryotic cells and successfully detected the proteins targeted to various organelles, including the membranes of endoplasmic reticulum (ER) and nuclear envelope, ER lumen, nuclear pores, spindle pole bodies and mitochondrial matrices. We further implemented cysteine-rich tag-antibody fusion proteins as new immuno-EM probes. Thus, our approaches should allow biologists to address a wide range of biological questions at the single-molecule level in cellular ultrastructural contexts.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica/métodos , Sistema Livre de Células , Células HeLa , Humanos , Microscopia de Fluorescência , Schizosaccharomyces , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
J Invest Dermatol ; 135(3): 690-700, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25233072

RESUMO

Chemotherapeutic agents induce complex tissue responses in vivo and damage normal organ functions. Here we use the feather follicle to investigate details of this damage response. We show that cyclophosphamide treatment, which causes chemotherapy-induced alopecia in mice and man, induces distinct defects in feather formation: feather branching is transiently and reversibly disrupted, thus leaving a morphological record of the impact of chemotherapeutic agents, whereas the rachis (feather axis) remains unperturbed. Similar defects are observed in feathers treated with 5-fluorouracil or taxol but not with doxorubicin or arabinofuranosyl cytidine (Ara-C). Selective blockade of cell proliferation was seen in the feather branching area, along with a downregulation of sonic hedgehog (Shh) transcription, but not in the equally proliferative rachis. Local delivery of the Shh inhibitor, cyclopamine, or Shh silencing both recapitulated this effect. In mouse hair follicles, those chemotherapeutic agents that disrupted feather formation also downregulated Shh gene expression and induced hair loss, whereas doxorubicin or Ara-C did not. Our results reveal a mechanism through which chemotherapeutic agents damage rapidly proliferating epithelial tissue, namely via the cell population-specific, Shh-dependent inhibition of proliferation. This mechanism may be targeted by future strategies to manage chemotherapy-induced tissue damage.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Plumas/citologia , Proteínas Hedgehog/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Galinhas , Regulação para Baixo/efeitos dos fármacos , Plumas/efeitos dos fármacos , Plumas/metabolismo , Folículo Piloso/citologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
4.
Cell Stem Cell ; 14(1): 27-39, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24268696

RESUMO

Although somatic cell nuclear transfer (SCNT) and induction of pluripotency (to form iPSCs) are both recognized reprogramming methods, there has been relatively little comparative analysis of the resulting pluripotent cells. Here, we examine the capacity of these two reprogramming approaches to rejuvenate telomeres using late-generation telomerase-deficient (Terc(-/-)) mice that exhibit telomere dysfunction and premature aging. We found that embryonic stem cells established from Terc(-/-) SCNT embryos (Terc(-/-) ntESCs) have greater differentiation potential and self-renewal capacity than Terc(-/-) iPSCs. Remarkably, SCNT results in extensive telomere lengthening in cloned embryos and improved telomere capping function in the established Terc(-/-) ntESCs. In addition, mitochondrial function is severely impaired in Terc(-/-) iPSCs and their differentiated derivatives but significantly improved in Terc(-/-) ntESCs. Thus, our results suggest that SCNT-mediated reprogramming mitigates telomere dysfunction and mitochondrial defects to a greater extent than iPSC-based reprogramming. Understanding the basis of this differential could help optimize reprogramming strategies.


Assuntos
Diferenciação Celular , Reprogramação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Técnicas de Transferência Nuclear , RNA/fisiologia , Telomerase/fisiologia , Telômero/genética , Trifosfato de Adenosina/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Hibridização in Situ Fluorescente , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Placa Neural/metabolismo , Placa Neural/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
PLoS Genet ; 9(8): e1003715, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950735

RESUMO

Macroautophagy (autophagy) is crucial for cell survival during starvation and plays important roles in animal development and human diseases. Molecular understanding of autophagy has mainly come from the budding yeast Saccharomyces cerevisiae, and it remains unclear to what extent the mechanisms are the same in other organisms. Here, through screening the mating phenotype of a genome-wide deletion collection of the fission yeast Schizosaccharomyces pombe, we obtained a comprehensive catalog of autophagy genes in this highly tractable organism, including genes encoding three heretofore unidentified core Atg proteins, Atg10, Atg14, and Atg16, and two novel factors, Ctl1 and Fsc1. We systematically examined the subcellular localization of fission yeast autophagy factors for the first time and characterized the phenotypes of their mutants, thereby uncovering both similarities and differences between the two yeasts. Unlike budding yeast, all three Atg18/WIPI proteins in fission yeast are essential for autophagy, and we found that they play different roles, with Atg18a uniquely required for the targeting of the Atg12-Atg5·Atg16 complex. Our investigation of the two novel factors revealed unforeseen autophagy mechanisms. The choline transporter-like protein Ctl1 interacts with Atg9 and is required for autophagosome formation. The fasciclin domain protein Fsc1 localizes to the vacuole membrane and is required for autophagosome-vacuole fusion but not other vacuolar fusion events. Our study sheds new light on the evolutionary diversity of the autophagy machinery and establishes the fission yeast as a useful model for dissecting the mechanisms of autophagy.


Assuntos
Autofagia/genética , Proteínas de Membrana/genética , Peptídeos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Proteínas Relacionadas à Autofagia , Citoplasma/genética , Citoplasma/metabolismo , Proteínas de Ligação a DNA , Genoma Fúngico , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/metabolismo , Saccharomyces cerevisiae , Deleção de Sequência , Vacúolos
6.
Nature ; 455(7212): 542-6, 2008 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-18818657

RESUMO

The neonatal Fc receptor (FcRn) transports maternal IgG across epithelial barriers, thereby providing the fetus or newborn with humoral immunity before its immune system is fully functional. In newborn rats, FcRn transfers IgG from milk to blood by apical-to-basolateral transcytosis across intestinal epithelial cells. The pH difference between the apical (pH 6.0-6.5) and basolateral (pH 7.4) sides of intestinal epithelial cells facilitates the efficient unidirectional transport of IgG, because FcRn binds IgG at pH 6.0-6.5 but not at pH 7 or more. As milk passes through the neonatal intestine, maternal IgG is removed by FcRn-expressing cells in the proximal small intestine (duodenum and jejunum); remaining proteins are absorbed and degraded by FcRn-negative cells in the distal small intestine (ileum). Here we use electron tomography to make jejunal transcytosis visible directly in space and time, developing new labelling and detection methods to map individual nanogold-labelled Fc within transport vesicles and simultaneously to characterize these vesicles by immunolabelling. Combining electron tomography with a non-perturbing endocytic label allowed us to conclusively identify receptor-bound ligands, resolve interconnecting vesicles, determine whether a vesicle was microtubule-associated, and accurately trace FcRn-mediated transport of IgG. Our results present a complex picture in which Fc moves through networks of entangled tubular and irregular vesicles, only some of which are microtubule-associated, as it migrates to the basolateral surface. New features of transcytosis are elucidated, including transport involving multivesicular body inner vesicles/tubules and exocytosis through clathrin-coated pits. Markers for early, late and recycling endosomes each labelled vesicles in different and overlapping morphological classes, revealing spatial complexity in endo-lysosomal trafficking.


Assuntos
Anticorpos/metabolismo , Células Epiteliais/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Intestinos/citologia , Receptores Fc/metabolismo , Animais , Animais Recém-Nascidos , Elétrons , Ouro , Humanos , Imageamento Tridimensional , Imunidade Materno-Adquirida , Imunoglobulina G/metabolismo , Mucosa Intestinal/metabolismo , Jejuno/citologia , Transporte Proteico , Ratos , Tomografia
7.
J Mol Biol ; 316(1): 201-11, 2002 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-11829513

RESUMO

Ca(2+)-ATPase is responsible for active transport of calcium ions across the sarcoplasmic reticulum membrane. This coupling involves an ordered sequence of reversible reactions occurring alternately at the ATP site within the cytoplasmic domains, or at the calcium transport sites within the transmembrane domain. These two sites are separated by a large distance and conformational changes have long been postulated to play an important role in their coordination. To characterize the nature of these conformational changes, we have built atomic models for two reaction intermediates and postulated the mechanisms governing the large structural changes. One model is based on fitting the X-ray crystallographic structure of Ca(2+)-ATPase in the E1 state to a new 6 A structure by cryoelectron microscopy in the E2 state. This fit indicates that calcium binding induces enormous movements of all three cytoplasmic domains as well as significant changes in several transmembrane helices. We found that fluorescein isothiocyanate displaced a decavanadate molecule normally located at the intersection of the three cytoplasmic domains, but did not affect their juxtaposition; this result indicates that our model likely reflects a native E2 conformation and not an artifact of decavanadate binding. To explain the dramatic structural effect of calcium binding, we propose that M4 and M5 transmembrane helices are responsive to calcium binding and directly induce rotation of the phosphorylation domain. Furthermore, we hypothesize that both the nucleotide-binding and beta-sheet domains are highly mobile and driven by Brownian motion to elicit phosphoenzyme formation and calcium transport, respectively. If so, the reaction cycle of Ca(2+)-ATPase would have elements of a Brownian ratchet, where the chemical reactions of ATP hydrolysis are used to direct the random thermal oscillations of an innately flexible molecule.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , ATPases Transportadoras de Cálcio/ultraestrutura , Microscopia Crioeletrônica , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/química , Catálise , Cristalografia por Raios X , Fluoresceína-5-Isotiocianato/metabolismo , Transporte de Íons , Modelos Moleculares , Fosforilação , Maleabilidade , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Coelhos , Rotação , Vanadatos/antagonistas & inibidores , Vanadatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA