Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Poult Sci ; 103(9): 103946, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38954902

RESUMO

This study aimed to investigate the effects of dietary Bacillus velezensis KNF-209 (BV-KNF-209) on the growth performance, immunity, and gut health of broilers. A total of 540 one-day-old male Cobb-500 broilers were randomly divided into 5 groups of 6 replicates with 18 broilers per replicate. Dietary treatments were corn-soybean meal basal diets supplemented with 0, 50, 100, 200, and 400 mg/kg BV-KNF-209 (CON, BV 50, BV 100, BV 200, and BV 400 groups, respectively) for 42 d. Compared with the CON group, the average daily gains (ADG) at 0 to 42 d in the BV 100 and BV 200 groups were significantly increased (P < 0.01), and the feed-to-gain (F:G) ratios were significantly decreased at 0 to 21 d (P < 0.01) and 0 to 42 d (P < 0.05). The BV 200 and BV 400 groups had higher serum immunoglobulin M (IgM) levels at d 21 and 42 (P < 0.05). The serum levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) were significantly decreased in the BV 50, BV 100, and BV 200 groups at d 21 (P < 0.05), and serum IL-1ß and IL-6 levels were also reduced in the BV 100 and BV 200 groups at d 42 (P < 0.05). Meanwhile, increased interleukin-10 (IL-10) levels in the jejunal and ileal mucosa at d 42 were observed in the BV 100, BV 200, and BV 400 groups (P < 0.05), while the IL-1ß and IL-6 levels (P < 0.01) were decreased. The BV 200 and BV 400 groups showed significantly higher activities of lipase and trypsin (P < 0.05) in jejunal digesta as well as higher activities of amylase and trypsin (P < 0.01) in ileal digesta at d 42. The cecal acetic acid and propionic acid levels in the BV groups and lactic acid levels in the BV 50, BV 100, and BV 200 groups (P < 0.05) were significantly higher compared to those in the CON group. Overall, dietary BV-KNF-209 supplementation significantly improved broiler growth performance, an effect that may have been achieved by heightening immunity, increasing digestive enzyme activity, and raising intestinal short-chain fatty acids and lactic acid levels.

2.
Pulm Circ ; 14(3): e12414, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035784

RESUMO

Chronic obstructive pulmonary disease (COPD) is a persistent and progressive disorder characterized by airway or alveolar abnormalities, commonly leading to pulmonary hypertension (PH). This clinical observational study investigates the therapeutic mechanisms of Bufei Huoxue capsules (BHC) in treating PH in patients with COPD-linked PH (COPD-PH) using network pharmacology and molecular docking methods, and assesses the therapeutic efficacy and safety of BHCs. The active compounds and their target proteins in BHCs were sourced from the Traditional Chinese Medicine Systems Pharmacology database, with additional target proteins derived from the GeneCards and OMIM databases. An active network was constructed using Cytoscape 3.7.1, and interaction networks were established. Intersecting targets underwent Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using the Metascape database. Network pharmacology and molecular docking studies demonstrated favorable binding affinities of BHC active ingredients, such as quercetin, bavachalcone, and isobavachin, for key targets including PTGS1, ESR1, and PTGS2. Gene Ontology enrichment analysis highlighted the involvement of these targets in processes such as the positive regulation of locomotion, the transmembrane receptor protein tyrosine kinase signaling pathway, and peptidyl-tyrosine phosphorylation. KEGG pathway analysis indicated their roles in pathways related to cancer, AGE-RAGE signaling in diabetic complications, and prostate cancer. BHCs exhibit therapeutic effects on COPD-PH through multi-component, multi-target, and multi-pathway interactions. This clinical observational study confirms the efficacy and safety of BHCs in improving cardiac and pulmonary functions, enhancing exercise tolerance, and elevating the quality of life in patients with COPD-PH.

3.
Pediatr Allergy Immunol ; 35(6): e14166, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822736

RESUMO

BACKGROUND: There is increasing interest in elucidating the relationship between adenoid hypertrophy (AH) and allergic rhinitis (AR). However, the impact of aeroallergen sensitization patterns on children with AH and AR remains unclear. METHODS: Patients aged 2-8 years (recruited from January 2019 to December 2022) with nasal symptoms were assessed for allergies, adenoid size, and respiratory viral infection history. The serum total immunoglobulin E (IgE) and specific IgE levels were measured, and flexible nasal endoscopy was performed. The relationship between AH, aeroallergen sensitization patterns, and lymphocyte subpopulations in adenoid samples was analyzed using flow cytometry. RESULTS: In total, 5281 children were enrolled (56.5% with AR; and 48.6% with AH). AH was more prevalent in children with AR. Compared to nonsensitized individuals, those polysensitized to molds had a higher prevalence of AH (adjusted OR 1.61, 95% CI 1.32-1.96) and a greater occurrence of two or more respiratory viral infections, particularly in adenoidectomy patients. The percentages and corrected absolute counts of regulatory T (Treg) cells, activated Tregs, class-switched memory B cells (CSMBs), natural killer (NK) T cells, and NK cell subpopulations were reduced in the adenoid tissues of children with both AH and AR (AH-AR) compared to AH-nAR children. Polysensitization in AH-AR children correlated with lower CSMB percentages. CONCLUSION: Polysensitivity to molds is associated with an increased risk of AH in children with AR. Fewer B cells, NK cells, and Treg cells with an effector/memory phenotype were detected in the adenoids of AR children, and these lower percentages of immune cells, particularly CSMBs, were closely linked to aeroallergen sensitization models and respiratory viral infection.


Assuntos
Tonsila Faríngea , Hipertrofia , Imunoglobulina E , Rinite Alérgica , Humanos , Tonsila Faríngea/imunologia , Tonsila Faríngea/patologia , Criança , Masculino , Feminino , Hipertrofia/imunologia , Pré-Escolar , Rinite Alérgica/imunologia , Rinite Alérgica/epidemiologia , Imunoglobulina E/sangue , Fenótipo , Alérgenos/imunologia , Linfócitos T Reguladores/imunologia , Prevalência , Adenoidectomia
4.
J Cancer Res Clin Oncol ; 150(2): 80, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319395

RESUMO

OBJECTIVE: To explore the feasibility of the postoperative diagnostic 131I whole-body planar scans (Dx-WBS) in papillary thyroid cancer (PTC) patients, and to clarify its value for accurate staging, risk stratification, and postoperative radioactive iodine (RAI) treatment management. DESIGN: Retrospective study from 2015 to 2021. SETTING: A total of 1294 PTC patients in the tertiary referral hospital. PARTICIPANTS: Patients with differentiated thyroid cancer who underwent total/subtotal thyroidectomy were included. Patients with non-PTC pathological type, non-first RAI treatment, and incomplete data such as Dx-WBS and postablation WBS (Rx-WBS) were excluded. METHODS: The diagnostic efficacy of Dx-WBS was calculated with Rx-WBS as the reference. All patients were initially staged by the 8th edition of TNM staging, and risk stratification was performed based on clinical and pathological information. After Dx-WBS, the risk stratification was re-evaluated, and management was reconfirmed. RESULTS: The detection rates of Dx-WBS for residual thyroid, cervical lymph nodes, upper mediastinal lymph nodes, lung, and bone distant metastasis were 97.6%, 78.3%, 82.1%, 66.7%, and 61.2%, respectively. The risk stratification of 113 patients (8.7%) changed after Dx-WBS, of which 107 patients changed from low to intermediate risk, 2 from low to high risk, and 4 from medium to high risk. A total of 241 patients (18.6%) adjusted the RAI regimen after Dx-WBS. CONCLUSION: This study confirms the diagnostic efficacy of the postoperative Dx-WBS in PTC patients and the value of Dx-WBS in accurately assessing risk stratification, as well as assisting in determining RAI treatment.


Assuntos
Radioisótopos do Iodo , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/cirurgia , Radioisótopos do Iodo/uso terapêutico , Estudos Retrospectivos , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/cirurgia
5.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 223-238, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38143380

RESUMO

Glioma is characterized by rapid cell proliferation, aggressive invasion, altered apoptosis and a poor prognosis. ß-Sitosterol, a kind of phytosterol, has been shown to possess anticancer activities. Our current study aims to investigate the effects of ß-sitosterol on gliomas and reveal the underlying mechanisms. Our results show that ß-sitosterol effectively inhibits the growth of U87 cells by inhibiting proliferation and inducing G2/M phase arrest and apoptosis. In addition, ß-sitosterol inhibits migration by downregulating markers of epithelial-mesenchymal transition (EMT). Mechanistically, network pharmacology and transcriptomics approaches illustrate that the EGFR/MAPK signaling pathway may be responsible for the inhibitory effect of ß-sitosterol on glioma. Afterward, the results show that ß-sitosterol effectively suppresses the EGFR/MAPK signaling pathway. Moreover, ß-sitosterol significantly inhibits tumor growth in a U87 xenograft nude mouse model. ß-Sitosterol inhibits U87 cell proliferation and migration and induces apoptosis and cell cycle arrest in U87 cells by blocking the EGFR/MAPK signaling pathway. These results suggest that ß-sitosterol may be a promising therapeutic agent for the treatment of glioma.


Assuntos
Glioma , Farmacologia em Rede , Sitosteroides , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Transdução de Sinais , Proliferação de Células , Receptores ErbB/genética , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Apoptose , Movimento Celular
6.
J Orthop Surg Res ; 18(1): 877, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980493

RESUMO

BACKGROUND: Recent studies have shown that circRNAs are involved in the pathogenesis of osteoarthritis (OA) by affecting various fundamental cellular characteristics of chondrocytes. The purpose of this paper is to investigate the role and regulatory mechanism of hsa_circ_0020014 (circ_0020014) in chondrocytes of OA. METHODS: The inflammatory cytokine interleukin 1 beta (IL-1ß) was used to stimulate human chondrocytes. Cell viability, proliferation, and apoptosis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), 5-Ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. Several protein levels were determined by western blotting (WB). Levels of inflammatory cytokines and malondialdehyde (MDA) were determined by enzyme-linked immunosorbent assay (ELISA). Relative expression of circ_0020014 was estimated by real-time polymerase quantitative chain reaction (RT-qPCR). Bioinformatics prediction combined with dual-luciferase reporter, RIP and RNA pull-down assays were done to probe into the regulatory mechanism of circ_0020014. RESULTS: Circ_0020014 was overexpressed in OA patient-derived articular cartilages and IL-1ß-stimulated chondrocytes. Silencing of circ_0020014 lighted IL-1ß-prompted chondrocyte proliferation repression, apoptosis, inflammation, and oxidative stress. Mechanically, circ_0020014 functioned as a miR-24-3p molecular sponge to regulate cathepsin B (CTSB) expression. Furthermore, miR-24-3p inhibition alleviated circ_0020014 knockdown-mediation repression of IL-1ß-urged chondrocyte injury. In addition, CTSB overexpression whittled miR-24-3p upregulation-mediated suppression of IL-1ß-urged chondrocyte injury. CONCLUSION: Our findings demonstrated that the circ_0020014/miR-24-3p/CTSB axis was associated with IL-1ß-prompted chondrocyte injury, supporting the involvement of circ_0020014 in the OA pathogenesis.


Assuntos
Condrócitos , MicroRNAs , Humanos , Catepsina B , Interleucina-1beta/farmacologia , Apoptose/genética , Citocinas , MicroRNAs/genética
7.
World J Stem Cells ; 15(7): 713-733, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37545758

RESUMO

BACKGROUND: Current evidence shows that human induced pluripotent stem cells (hiPSCs) can effectively differentiate into keratinocytes (KCs), but its effect on skin burn healing has not been reported. AIM: To observe the effects of hiPSCs-derived KCs transplantation on skin burn healing in mice and to preliminarily reveal the underlying mechanisms. METHODS: An analysis of differentially expressed genes in burn wounds based on GEO datasets GSE140926, and GSE27186 was established. A differentiation medium containing retinoic acid and bone morphogenetic protein 4 was applied to induce hiPSCs to differentiate into KCs. The expression of KCs marker proteins was detected using immunofluorescence staining. A model of a C57BL/6 mouse with deep cutaneous second-degree burn was created, and then phosphate buffered saline (PBS), hiPSCs-KCs, or hiPSCs-KCs with knockdown of COL7A1 were injected around the wound surface. The wound healing, re-epithelialization, engraftment of hiPSCs-KCs into wounds, proinflammatory factor level, and the NF-κB pathway proteins were assessed by hematoxylin-eosin staining, carboxifluorescein diacetate succinimidyl ester (CFSE) fluorescence staining, enzyme linked immunosorbent assay, and Western blotting on days 3, 7, and 14 after the injection, respectively. Moreover, the effects of COL7A1 knockdown on the proliferation and migration of hiPSCs-KCs were confirmed by immunohistochemistry, EdU, Transwell, and damage repair assays. RESULTS: HiPSCs-KCs could express the hallmark proteins of KCs. COL7A1 was down-regulated in burn wound tissues and highly expressed in hiPSCs-KCs. Transplantation of hiPSCs-KCs into mice with burn wounds resulted in a significant decrease in wound area, an increase in wound re-epithelialization, a decrease in proinflammatory factors content, and an inhibition of NF-κB pathway activation compared to the PBS group. The in vitro assay showed that COL7A1 knockdown could rescue the inhibition of hiPSCs-KCs proliferation and migration, providing further evidence that COL7A1 speeds up burn wound healing by limiting cell proliferation and migration. CONCLUSION: In deep, second-degree burn wounds, COL7A1 can promote KC proliferation and migration while also suppressing the inflammatory response.

8.
Cancer Med ; 12(16): 17239-17252, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37409506

RESUMO

BACKGROUND: Treatment-free remission (TFR) has become the main target for chronic myeloid leukemia (CML). Tyrosine kinase inhibitors (TKI) dose optimization is crucial in managing adverse events, and improving adherence in clinical practice. In persons achieving a deep molecular response (DMR), some data suggest TKI dose reduction before discontinuation does not change success rate of achieving TFR, but this is controversial. However, data on quality-of-life (QoL) and mental health in CML patients with full-dose TKI, low-dose TKI, and TKI discontinuation are limited. Moreover, recent evidence indicating the feasibility of TKI dose reduction and discontinuation after dose reduction, which may change CML patients' perspectives on TKI discontinuation. METHODS: We conducted a cross-sectional study using online questionnaires to explore the QoL, mental health in patients with diverse TKI dose, and perspective on TKI dose reduction as a prelude to discontinuation. RESULTS: 1450 responses were included in the analysis. 44.3% of respondents reported a moderate-to-severe impact of TKI treatment on their QoL. 17% of respondents had moderate-to-severe anxiety. 24.4% of respondents had moderate-to-severe depression. In 1326 patients who had not discontinued their medication, 1055 (79.6%) patients reported they would try TKI discontinuation because of concerns over side effects of long-term medication (67.9%), financial burden (68.7%), poor QoL (77.9%), pregnancy needs (11.6%), anxiety and depression while taking TKI (20.8%), inconvenience of TKI treatment (22.2%). 613 of 817 (75.0%) patients on full-dose TKI therapy indicated they preferred trying a dose reduction before discontinuing TKI therapy after dose reduction compared with 31 (3.8%) preferring no dose reduction before stopping. CONCLUSIONS: TKI dose reduction showed a significant improvement of patients' QoL and mental health, comparable to the effect of TKI discontinuation. Most patients indicated they preferred dose reduction before stopping TKI therapy. In clinical practice, TKI dose reduction can be considered as a bridge from full-dose treatment to discontinuation. Our results showed that tyrosine kinase inhibitors (TKI) dose reduction showed a significant improvement of patients' quality-of-life and mental health, comparable to the effect of TKI discontinuation. Most patients desire to discontinue TKI in the future. TKI discontinuation after dose reduction is more acceptable compared to discontinuing it directly. In clinical practice, TKI dose reduction can be considered as a bridge from full-dose treatment to discontinuation. Please do not hesitate to contact me in case further clarification is needed with this submission.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide de Fase Crônica , Humanos , Inibidores de Proteínas Quinases/efeitos adversos , Qualidade de Vida , Estudos Transversais , Saúde Mental , Leucemia Mieloide de Fase Crônica/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico
9.
ACS Appl Mater Interfaces ; 15(3): 4755-4763, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36629917

RESUMO

Efficient separation of water-in-oil emulsion is of great importance but remains highly challenging since such emulsion contains stable tiny droplets with a diameter less than 20 µm. Herein, we reported the fabrication of a modular fibrous functional membrane using an "in situ growth and covalent functionalization" strategy. The as-prepared PAN@LDH@OTS (PAN = polyacrylonitrile; LDH = layered double hydroxides; and OTS = octadecyltrichlorosilane) membrane possessed an interlaced rough nanostructured surface with intriguing superhydrophobic/superlipophilic properties. When applied for the separation of surfactant-stabilized water-in-oil emulsion (SSE), the PAN@LDH@OTS membrane exhibited an ultrahigh permeation flux of up to 4.63 × 104 L m-2 h-1 with an outstanding separation efficiency of >99.92%, outperforming most of the state-of-the-art membranes. In addition, the membrane can maintain a stable permeation flux and superhydrophobic/superlipophilic properties after 20 times of use. Detailed characterization demonstrated that the demulsification of the SSE process was as follows: first, the droplets can be easily adsorbed to the PAN@LDH@OTS membrane due to the improved intermolecular interactions between OTS and the surfactants (Span 80); second, the droplets can be deformed by the electropositive LDH laminate; and third, the deformed tiny emulsion droplets coalesced into large droplets and floated up, and as a result, efficient separation of SSE can be achieved.

10.
J Ethnopharmacol ; 305: 116103, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36586525

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sympathetic hyperactivation is a significant risk factor in the development of cardiovascular disease. Safranal has shown good myocardial protection in recent studies, but the mechanism of its role in myocardial injury caused by sympathetic hyperactivation remains unclear. AIM OF THE STUDY: The purpose of this study was to investigate whether safranal can effectively reduce isoproterenol (ISO)-induced myocardial injury in rats and H9c2 cells and to reveal its pharmacological action and target in inhibiting myocardial injury caused by sympathetic hyperactivation. MATERIALS AND METHODS: This study was carried out using network pharmacology, molecular docking, and in vitro and in vivo experiments. An in vivo model of myocardial injury was established by subcutaneous injection of ISO, and an in vitro model of H9c2 cell injury was induced by ISO. RESULTS: Safranal ameliorated myocardial injury caused by sympathetic hyperactivation by reducing the level of myocardial apoptosis. According to the results of network pharmacological analysis and molecular docking, the mechanism by which safranal alleviates myocardial injury may be closely related to the TNF signaling pathway, and safranal plays a role by regulating the core targets of the TNF signaling pathway. Safranal significantly inhibited the protein expression of TNF, PTGS2, MMP9 and pRELA. CONCLUSION: Safranal plays a protective role in myocardial injury induced by sympathetic hyperactivation by downregulating the TNF signaling pathway.


Assuntos
Miocárdio , Farmacologia em Rede , Animais , Ratos , Isoproterenol/toxicidade , Simulação de Acoplamento Molecular , Miocárdio/metabolismo , Fatores de Necrose Tumoral
11.
Front Immunol ; 13: 1054128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532046

RESUMO

Heat stress (HS) in summer has caused huge economic losses to animal husbandry production recently. When mammary gland is exposed to high temperatures, it will cause blood-milk barrier damage. Hydroxy-selenomethionine (HMSeBA) is a new selenium source with better guarantee of animals' production performance under stress, but whether it has protective effect on heat stress-induced blood-milk damage is still unclear. We established mammary epithelial cells and mice heat stress injury models to fill this research gap, and hope to provide theoretical basis for using HMSeBA to alleviate heat stress damage mammary gland. The results showed that (1) Heat stress significantly decreases in vitro transepithelial electrical resistance (TEER) and cell viability (P < 0.01), and significantly decreases clinical score, histological score, and total alveoli area of mice mammary gland tissue (P < 0.01). (2) HMSeBA significantly increases TEER and fluorescein sodium leakage of HS-induced monolayer BMECs (P < 0.01), significantly improves the milk production and total area of alveoli (P < 0.01), and reduces clinical score, histological score, mRNA expression of heat stress-related proteins, and inflammatory cytokines release of heat-stressed mice (P < 0.01). (3) HMSeBA significantly improves tight junction structure damage, and significantly up-regulated the expression of tight junction proteins (ZO-1, claudin 1, and occludin) as well as signal molecules PI3K, AKT, and mTOR (P < 0.01) in heat-stressed mammary tissue. (4) HMSeBA significantly increases glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and superoxide dismutase release (SOD) (P < 0.01) and significantly reduce malondialdehyde (MDA) expression (P < 0.01) in heat-stressed mammary tissue. In conclusion, this study implemented heat-stressed cell and mice model and showed that HMSeBA significantly regulate antioxidant capacity, inhibited inflammation, and regulate tight junction proteins expression in blood-milk barrier via PI3K/AKT/mTOR signaling pathway, so as to alleviate mammary gland damage and ensure its structure and function integrity.


Assuntos
Transtornos de Estresse por Calor , Selênio , Animais , Camundongos , Selenometionina/farmacologia , Selênio/farmacologia , Leite/metabolismo , Antioxidantes/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Resposta ao Choque Térmico , Proteínas de Junções Íntimas , Serina-Treonina Quinases TOR
12.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(11): 972-978, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36328426

RESUMO

Objective To investigate the effect of connexin 43 (Cx43) on M1 polarization of mouse RAW264.7 macrophages induced by lipopolysaccharide (LPS). Methods RAW264.7 macrophages were cultured in vitro and randomly divided into four groups: control group, LPS group, LPS combined with Gap19 group, LPS combined with Gap26 group. The protein levels of Cx43 and M1 polarization marker CD86 and inducible nitric oxide synthase (iNOS) in mouse RAW264.7 macrophages were detected by Western blot analysis. The expression and localization of CD86 in RAW264.7 macrophages were observed by immunofluorescence cytochemistry, and the expression frequency of M1 polarization marker CD86 in mouse RAW264.7 macrophages was detected by flow cytometry. Results Compared with the control group, the protein expression of CD86, iNOS and Cx43, as well as the expression frequency of CD86 in LPS group showed a significant increase. However, compared with LPS group, the protein expression of CD86 and iNOS, and the expression frequency of CD86 decreased significantly in LPS combined with Gap19 group and LPS combined with Gap26 group. As such, LPS could induce M1 polarization of macrophage, while Gap19 and Gap26 can reduce the expression of M1 polarization markers. Conclusion M1 polarization of macrophages can be inhibited by blocking Cx43.


Assuntos
Conexina 43 , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Macrófagos/metabolismo
13.
J Pers Med ; 12(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36013178

RESUMO

Background and Objectives: Genomic information is increasingly relevant for disease prevention and risk management at the individual and population levels. Screening healthy adults for Tier 1 conditions of hereditary breast and ovarian cancer, Lynch syndrome, and familial hypercholesterolemia using a population-based approach can help identify the 1−2% of the US population at increased risk of developing diseases associated with these conditions and tailor prevention strategies. Our objective is to report findings from an implementation science study that evaluates multi-level facilitators and barriers to implementation of the In Our DNA SC population-wide genomic screening initiative. Methods: We established an IMPACTeam (IMPlementAtion sCience for In Our DNA SC Team) to evaluate the pilot phase using principles of implementation science. We used a parallel convergent mixed methods approach to assess the Reach, Implementation, and Effectiveness outcomes from the RE-AIM implementation science framework during the pilot phase of In Our DNA SC. Quantitative assessment included the examination of frequencies and response rates across demographic categories using chi-square tests. Qualitative data were audio-recorded and transcribed, with codes developed by the study team based on the semi-structured interview guide. Results: The pilot phase (8 November 2021, to 7 March 2022) included recruitment from ten clinics throughout South Carolina. Reach indicators included enrollment rate and representativeness. A total of 23,269 potential participants were contacted via Epic's MyChart patient portal with 1976 (8.49%) enrolled. Black individuals were the least likely to view the program invitation (28.9%) and take study-related action. As a result, there were significantly higher enrollment rates among White (10.5%) participants than Asian (8.71%) and Black (3.46%) individuals (p < 0.0001). Common concerns limiting reach and participation included privacy and security of results and the impact participation would have on health or life insurance. Facilitators included family or personal history of a Tier 1 condition, prior involvement in genetic testing, self-interest, and altruism. Assessment of implementation (i.e., adherence to protocols/fidelity to protocols) included sample collection rate (n = 1104, 55.9%) and proportion of samples needing recollection (n = 19, 1.7%). There were no significant differences in sample collection based on demographic characteristics. Implementation facilitators included efficient collection processes and enthusiastic clinical staff. Finally, we assessed the effectiveness of the program, finding low dropout rates (n = 7, 0.35%), the identification of eight individuals with Tier 1 conditions (0.72% positive), and high rates of follow-up genetic counseling (87.5% completion). Conclusion: Overall, Asian and Black individuals were less engaged, with few taking any study-related actions. Strategies to identify barriers and promoters for the engagement of diverse populations are needed to support participation. Once enrolled, individuals had high rates of completing the study and follow-up engagement with genetic counselors. Findings from the pilot phase of In Our DNA SC offer opportunities for improvement as we expand the program and can provide guidance to organizations seeking to begin efforts to integrate population-wide genomic screening.

14.
Chem Commun (Camb) ; 58(56): 7757-7760, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35734984

RESUMO

Exploring efficient bifunctional electrocatalysts is crucial for constructing water splitting systems. In this work, a bifunctional catalyst, NiCo layered double hydroxide (LDH) nanosheets with nickel vacancies, was fabricated by a hydrothermal and chemical etching method, which requires 195 and 227 mV overpotentials for HER and OER to achieve 10 mA cm-2 and exhibited sustained activity for 100 h with almost no degradation. This study provides a new idea for the rational design of efficient non-precious metal catalysts with defects for water splitting.

15.
Front Pharmacol ; 13: 862709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754483

RESUMO

Although the protective effects of naringenin (Nar) on vascular smooth muscle cells (VSMCs) have been confirmed, whether it has anti-proliferation and anti-migration effects in high-glucose-induced VSMCs has remained unclear. This study aimed to clarify the potential targets and molecular mechanism of Nar when used to treat high-glucose-induced vasculopathy based on transcriptomics, network pharmacology, molecular docking, and in vivo and in vitro assays. We found that Nar has visible anti-proliferation and anti-migration effects both in vitro (high-glucose-induced VSMC proliferation and migration model) and in vivo (type 1 diabetes mouse model). Based on the results of network pharmacology and molecular docking, vascular endothelial growth factor A (VEGFA), the proto-oncogene tyrosine-protein kinase Src (Src) and the kinase insert domain receptor (KDR) are the core targets of Nar when used to treat diabetic angiopathies, according to the degree value and the docking score of the three core genes. Interestingly, not only the Biological Process (BP), Molecular Function (MF), and KEGG enrichment results from network pharmacology analysis but also transcriptomics showed that phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) is the most likely downstream pathway involved in the protective effects of Nar on VSMCs. Notably, according to the differentially expressed genes (DEGs) in the transcriptomic analysis, we found that cAMP-responsive element binding protein 5 (CREB5) is a downstream protein of the PI3K/Akt pathway that participates in VSMCs proliferation and migration. Furthermore, the results of molecular experiments in vitro were consistent with the bioinformatic analysis. Nar significantly inhibited the protein expression of the core targets (VEGFA, Src and KDR) and downregulated the PI3K/Akt/CREB5 pathway. Our results indicated that Nar exerted anti-proliferation and anti-migration effects on high-glucose-induced VSMCs through decreasing expression of the target protein VEGFA, and then downregulating the PI3K/Akt/CREB5 pathway, suggesting its potential for treating diabetic angiopathies.

16.
PeerJ ; 10: e12969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35313522

RESUMO

Background: Oxidized low-density lipoproteins (ox-LDL) may induce foam cell formation from the vascular smooth muscle cell (VSMC) by inhibiting VSMC autophagy. This process accelerates the formation of atherosclerosis (AS). Connexin 43 (Cx43), which is the most widely distributed connexin in VSMC is associated with autophagy. However, the mechanism of action and the involvement of Cx43 in ox-LDL-inhibited VSMC autophagy remain unclear. Methods: The primary VSMC were obtained and identified, before primary VSMC were pretreated with an inhibitor (Cx43-specific inhibitor Gap26 and PI3K inhibitor LY294002) and stimulated with ox-LDL. Results: Ox-LDL not only inhibited autophagy in VSMC via downregulation of autophagy-related proteins (such as Beclin 1, LC3B, p62), but also increased Cx43 protein levels. Then we added Gap26 to VSMC in the ox-LDL+Gap26 group, in which autophagy-related proteins were increased and the accumulation of lipid droplets was reduced. These result suggested that an enhanced level of autophagy and an alleviation of lipid accumulation might be caused by inhibiting Cx43 in VSMC. The phosphorylation levels of PI3K, AKT, mTOR were increased by ox-LDL, thus down-regulating autophagy-related proteins. However, this situation was partially reversed by the Gap26. Moreover, Cx43 expression were decreased by LY294002 in ox-LDL-induced VSMCs. Conclusion: Inhibiting Cx43 may activate VSMC autophagy to inhibit foam cell formation by inhibiting the PI3K/AKT/mTOR signaling pathway.


Assuntos
Conexina 43 , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Conexina 43/genética , Fosfatidilinositol 3-Quinases/metabolismo , Músculo Liso Vascular/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Lipoproteínas LDL/farmacologia , Autofagia , Proteínas Relacionadas à Autofagia
17.
ACS Appl Mater Interfaces ; 14(5): 6869-6875, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35099169

RESUMO

The exploration of indurative and stable low-cost catalysts for hydrogen evolution reaction (HER) is of great importance for hydrogen energy economy, but it still faces challenges. Herein, we report a Cl-doped Ni3S2 (Cl-Ni3S2) nanoplate catalyst vertically grown on Ni foam with outstanding activity and durability for HER, which only requires an overpotential of 67 mV to reach a current density of 10 mA cm-2 in alkaline media and exhibits negligible degradation after 30 h of operation. Both the advanced X-ray absorption fine structure (XAFS) and density functional theory (DFT) calculation validate that Cl doping can optimize the electronic structure and the intrinsic activity of Ni3S2. This study devoted to the revelation of the impact of ionic doping on the activity of catalysts at the atomic scale can provide the direction for the rational design of novel and advanced HER electrocatalysts.

18.
Cancer Gene Ther ; 29(3-4): 341-357, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33674778

RESUMO

Studies have confirmed the relationship between dysregulated long noncoding RNAs and melanoma pathogenesis. However, the regulatory functions of long intergenic non-protein coding RNA 1291 (LINC01291) in melanoma remain unknown. Therefore, we evaluated LINC01291 expression in melanoma and explored its roles in regulating tumor behaviors. Further, the molecular events via which LINC01291 affects melanoma cells were investigated. LINC01291 expression in melanoma cells was analyzed using The Cancer Genome Atlas database and quantitative real-time polymerase chain reaction. Functional assays, including the Cell Counting Kit-8 assay, colony formation assay, flow cytometry, cell migration and invasion assays, and tumor xenograft models, were used to examine LINC01291's role in melanoma cells. Additionally, bioinformatics analysis, RNA immunoprecipitation, luciferase reporter assay, and western blotting were conducted to determine the tumor-promoting mechanism of LINC01291. LINC01291 was upregulated in melanoma tissues and cell lines. Following LINC01291 knockdown, cell proliferation, colony formation, migration, and invasion were diminished, whereas apoptosis was enhanced and the cell cycle was arrested at G0/G1. In addition, loss of LINC01291 decreased the chemoresistance of melanoma cells to cisplatin. Furthermore, LINC01291 interference inhibited melanoma tumor growth in vivo. Mechanistically, LINC01291 functions as a competing endogenous RNA by sponging microRNA-625-5p (miR-625-5p) in melanoma cells and maintaining insulin-like growth factor 1 receptor (IGF-1R) expression. Rescue experiments revealed that the roles induced by LINC01291 depletion in melanoma cells could be reversed by suppressing miR-625-5p or overexpressing IGF-1R. Our study identified the LINC01291/miR-625-5p/IGF-1R competing endogenous RNA pathway in melanoma cells, which may represent a novel diagnostic biomarker and an effective therapeutic target for melanoma.


Assuntos
Melanoma , MicroRNAs , RNA Longo não Codificante , Receptor IGF Tipo 1 , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptor IGF Tipo 1/metabolismo
19.
J Immunother Cancer ; 9(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34607898

RESUMO

PURPOSE: Resident memory CD8 T cells, owing to their ability to reside and persist in peripheral tissues, impart adaptive sentinel activity and amplify local immune response, and have beneficial implications for tumor surveillance and control. The current study aimed to clarify the less known chemotactic mechanisms that govern the localization, retention, and residency of memory CD8 T cells in the ovarian tumor microenvironment. EXPERIMENTAL DESIGN: RNA and protein expressions of chemokine receptors in CD8+ resident memory T cells in human ovarian tumor-infiltrating CD8+ T cells and their association with survival were analyzed. The role of CXCR6 on antitumor T cells was investigated using prophylactic vaccine models in murine ovarian cancer. RESULTS: Chemokine receptor profiling of CD8+CD103+ resident memory tumor-infiltrating lymphocytes in patients with ovarian cancer revealed high expression of CXCR6. Analysis of The Cancer Genome Atlas (TCGA) (ovarian cancer database revealed CXCR6 to be associated with CD103 and increased patient survival. Functional studies in mouse models of ovarian cancer revealed that CXCR6 is a marker of resident, but not circulatory, tumor-specific memory CD8+ T cells. CXCR6-deficient tumor-specific CD8+ T cells showed reduced retention in tumor tissues, leading to diminished resident memory responses and poor control of ovarian cancer. CONCLUSIONS: CXCR6, by promoting retention in tumor tissues, serves a critical role in resident memory T cell-mediated immunosurveillance and control of ovarian cancer. Future studies warrant exploiting CXCR6 to promote resident memory responses in cancers.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Monitorização Imunológica/métodos , Neoplasias Ovarianas/genética , Receptores CXCR6/metabolismo , Animais , Feminino , Humanos , Camundongos , Camundongos Knockout , Neoplasias Ovarianas/patologia , Microambiente Tumoral
20.
Sci Rep ; 11(1): 13971, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234167

RESUMO

To unravel the source of SARS-CoV-2 introduction and the pattern of its spreading and evolution in the United Arab Emirates, we conducted meta-transcriptome sequencing of 1067 nasopharyngeal swab samples collected between May 9th and Jun 29th, 2020 during the first peak of the local COVID-19 epidemic. We identified global clade distribution and eleven novel genetic variants that were almost absent in the rest of the world and that defined five subclades specific to the UAE viral population. Cross-settlement human-to-human transmission was related to the local business activity. Perhaps surprisingly, at least 5% of the population were co-infected by SARS-CoV-2 of multiple clades within the same host. We also discovered an enrichment of cytosine-to-uracil mutation among the viral population collected from the nasopharynx, that is different from the adenosine-to-inosine change previously reported in the bronchoalveolar lavage fluid samples and a previously unidentified upregulation of APOBEC4 expression in nasopharynx among infected patients, indicating the innate immune host response mediated by ADAR and APOBEC gene families could be tissue-specific. The genomic epidemiological and molecular biological knowledge reported here provides new insights for the SARS-CoV-2 evolution and transmission and points out future direction on host-pathogen interaction investigation.


Assuntos
COVID-19/epidemiologia , COVID-19/imunologia , Coinfecção/epidemiologia , Genômica , Imunidade Inata , Mutação , SARS-CoV-2/genética , Adulto , COVID-19/transmissão , Citidina Desaminase/genética , Feminino , Perfilação da Expressão Gênica , Genoma Viral/genética , Humanos , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , Especificidade de Órgãos , SARS-CoV-2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA