Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Cell Discov ; 10(1): 48, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38710677

RESUMO

Melanin-concentrating hormone (MCH) is a cyclic neuropeptide that regulates food intake, energy balance, and other physiological functions by stimulating MCHR1 and MCHR2 receptors, both of which are class A G protein-coupled receptors. MCHR1 predominately couples to inhibitory G protein, Gi/o, and MCHR2 can only couple to Gq/11. Here we present cryo-electron microscopy structures of MCH-activated MCHR1 with Gi and MCH-activated MCHR2 with Gq at the global resolutions of 3.01 Å and 2.40 Å, respectively. These structures reveal that MCH adopts a consistent cysteine-mediated hairpin loop configuration when bound to both receptors. A central arginine from the LGRVY core motif between the two cysteines of MCH penetrates deeply into the transmembrane pocket, triggering receptor activation. Integrated with mutational and functional insights, our findings elucidate the molecular underpinnings of ligand recognition and MCH receptor activation and offer a structural foundation for targeted drug design.

3.
Nature ; 624(7992): 663-671, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935377

RESUMO

Trace amine-associated receptor 1 (TAAR1), the founding member of a nine-member family of trace amine receptors, is responsible for recognizing a range of biogenic amines in the brain, including the endogenous ß-phenylethylamine (ß-PEA)1 as well as methamphetamine2, an abused substance that has posed a severe threat to human health and society3. Given its unique physiological role in the brain, TAAR1 is also an emerging target for a range of neurological disorders including schizophrenia, depression and drug addiction2,4,5. Here we report structures of human TAAR1-G-protein complexes bound to methamphetamine and ß-PEA as well as complexes bound to RO5256390, a TAAR1-selective agonist, and SEP-363856, a clinical-stage dual agonist for TAAR1 and serotonin receptor 5-HT1AR (refs. 6,7). Together with systematic mutagenesis and functional studies, the structures reveal the molecular basis of methamphetamine recognition and underlying mechanisms of ligand selectivity and polypharmacology between TAAR1 and other monoamine receptors. We identify a lid-like extracellular loop 2 helix/loop structure and a hydrogen-bonding network in the ligand-binding pockets, which may contribute to the ligand recognition in TAAR1. These findings shed light on the ligand recognition mode and activation mechanism for TAAR1 and should guide the development of next-generation therapeutics for drug addiction and various neurological disorders.


Assuntos
Metanfetamina , Fenetilaminas , Receptores Acoplados a Proteínas G , Humanos , Ligantes , Metanfetamina/metabolismo , Doenças do Sistema Nervoso/metabolismo , Fenetilaminas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Polifarmacologia , Ligação de Hidrogênio
4.
J Chem Inf Model ; 63(23): 7373-7381, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37831484

RESUMO

The stimulator of interferon genes (STING) is an important therapeutic target for cancer diseases. The activated STING recruits downstream tank-binding kinase 1 (TBK1) to trigger several important immune responses. However, the molecular mechanism of how agonist molecules mediate the STING-TBK1 interactions remains elusive. Here, we performed molecular dynamics simulations to capture the conformational changes of STING and TBK1 upon agonist binding. Our simulations revealed that multiple helices (α5-α7) and especially three loops (loop 6, loop 8, and C-terminal tail) of STING participated in the allosteric mediation of the STING-TBK1 interactions. Consistent results were also observed in the simulations of the constitutive activating mutant of STING (R284S). We further identified α5 as a key region in this agonist-induced activation mechanism of STING. Free-energy perturbation calculations of multiple STING agonists demonstrated that an alkynyl group targeting α5 is a determinant for agonist activities. These results not only offer deeper insights into the agonist-induced allosteric mediation of STING-TKB1 interactions but also provide a guidance for future drug development of this important therapeutic target.


Assuntos
Proteínas de Membrana , Simulação de Dinâmica Molecular , Interferons , Proteínas de Membrana/metabolismo
5.
Nature ; 621(7979): 635-641, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37524305

RESUMO

Class B G-protein-coupled receptors (GPCRs), including glucagon-like peptide 1 receptor (GLP1R) and parathyroid hormone 1 receptor (PTH1R), are important drug targets1-5. Injectable peptide drugs targeting these receptors have been developed, but orally available small-molecule drugs remain under development6,7. Here we report the high-resolution structure of human PTH1R in complex with the stimulatory G protein (Gs) and a small-molecule agonist, PCO371, which reveals an unexpected binding mode of PCO371 at the cytoplasmic interface of PTH1R with Gs. The PCO371-binding site is totally different from all binding sites previously reported for small molecules or peptide ligands in GPCRs. The residues that make up the PCO371-binding pocket are conserved in class B GPCRs, and a single alteration in PTH2R and two residue alterations in GLP1R convert these receptors to respond to PCO371. Functional assays reveal that PCO371 is a G-protein-biased agonist that is defective in promoting PTH1R-mediated arrestin signalling. Together, these results uncover a distinct binding site for designing small-molecule agonists for PTH1R and possibly other members of the class B GPCRs and define a receptor conformation that is specific only for G-protein activation but not arrestin signalling. These insights should facilitate the design of distinct types of class B GPCR small-molecule agonist for various therapeutic indications.


Assuntos
Imidazolidinas , Receptores Acoplados a Proteínas G , Compostos de Espiro , Humanos , Arrestina/metabolismo , Sítios de Ligação , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Imidazolidinas/farmacologia , Ligantes , Peptídeos/farmacologia , Conformação Proteica , Receptor Tipo 1 de Hormônio Paratireóideo/agonistas , Receptor Tipo 1 de Hormônio Paratireóideo/classificação , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/classificação , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos de Espiro/farmacologia , Desenho de Fármacos
6.
Cell Res ; 33(8): 604-616, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37221270

RESUMO

The dopaminergic system, including five dopamine receptors (D1R to D5R), plays essential roles in the central nervous system (CNS); and ligands that activate dopamine receptors have been used to treat many neuropsychiatric disorders, including Parkinson's Disease (PD) and schizophrenia. Here, we report cryo-EM structures of all five subtypes of human dopamine receptors in complex with G protein and bound to the pan-agonist, rotigotine, which is used to treat PD and restless legs syndrome. The structures reveal the basis of rotigotine recognition in different dopamine receptors. Structural analysis together with functional assays illuminate determinants of ligand polypharmacology and selectivity. The structures also uncover the mechanisms of dopamine receptor activation, unique structural features among the five receptor subtypes, and the basis of G protein coupling specificity. Our work provides a comprehensive set of structural templates for the rational design of specific ligands to treat CNS diseases targeting the dopaminergic system.


Assuntos
Doença de Parkinson , Receptores Dopaminérgicos , Humanos , Receptores Dopaminérgicos/metabolismo , Ligantes , Dopamina/metabolismo , Dopamina/uso terapêutico , Doença de Parkinson/genética , Doença de Parkinson/tratamento farmacológico , Genômica
7.
Nat Commun ; 14(1): 1268, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882417

RESUMO

Endothelin system comprises three endogenous 21-amino-acid peptide ligands endothelin-1, -2, and -3 (ET-1/2/3), and two G protein-coupled receptor (GPCR) subtypes-endothelin receptor A (ETAR) and B (ETBR). Since ET-1, the first endothelin, was identified in 1988 as one of the most potent endothelial cell-derived vasoconstrictor peptides with long-lasting actions, the endothelin system has attracted extensive attention due to its critical role in vasoregulation and close relevance in cardiovascular-related diseases. Here we present three cryo-electron microscopy structures of ETAR and ETBR bound to ET-1 and ETBR bound to the selective peptide IRL1620. These structures reveal a highly conserved recognition mode of ET-1 and characterize the ligand selectivity by ETRs. They also present several conformation features of the active ETRs, thus revealing a specific activation mechanism. Together, these findings deepen our understanding of endothelin system regulation and offer an opportunity to design selective drugs targeting specific ETR subtypes.


Assuntos
Doenças Cardiovasculares , Endotelina-1 , Humanos , Microscopia Crioeletrônica , Receptor de Endotelina A , Aminoácidos , Peptídeos
8.
J Med Chem ; 66(4): 2608-2621, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36723914

RESUMO

There is growing interest in covalent targeted inhibitors in drug discovery against previously "undruggable" sites and targets. These molecules typically feature an electrophilic warhead that reacts with nucleophilic groups of protein residues, most notably the thiol group of cysteines. One main challenge in the field is to develop versatile utilizable warheads. Here, we characterize the unique features of novel arsenous warheads for reaction with thiol species in a reversible manner and further demonstrate that organoarsenic probes can be chemically tuned toward specific molecular targets by developing selective and potent inhibitors of pyruvate kinase M2 (PKM2). We show that compound 24 is a covalent and allosteric inhibitor of PKM2 and its orally bioavailable prodrug 25 exerts efficacious inhibition of PKM2-dependent tumor growth in vitro and in vivo. Our results introduce 25 and its derivatives as useful pharmacological tools and provide a general road map for targeting the protein cysteinome using arsenous warheads.


Assuntos
Descoberta de Drogas , Piruvato Quinase , Cisteína/química
9.
Acta Pharmacol Sin ; 44(6): 1227-1237, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36482086

RESUMO

Parathyroid hormone (PTH) and PTH-related peptide (PTHrP) are two endogenous hormones recognized by PTH receptor-1 (PTH1R), a member of class B G protein- coupled receptors (GPCRs). Both PTH and PTHrP analogs including teriparatide and abaloparatide are approved drugs for osteoporosis, but they exhibit distinct pharmacology. Here we report two cryo-EM structures of human PTH1R bound to PTH and PTHrP in the G protein-bound state at resolutions of 2.62 Å and 3.25 Å, respectively. Detailed analysis of these structures uncovers both common and unique features for the agonism of PTH and PTHrP. Molecular dynamics (MD) simulation together with site-directed mutagenesis studies reveal the molecular basis of endogenous hormones recognition specificity and selectivity to PTH1R. These results provide a rational template for the clinical use of PTH and PTHrP analogs as an anabolic therapy for osteoporosis and other disorders.


Assuntos
Osteoporose , Proteína Relacionada ao Hormônio Paratireóideo , Humanos , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Sequência de Aminoácidos , Hormônio Paratireóideo/química , Hormônio Paratireóideo/metabolismo , Receptores Acoplados a Proteínas G , Osteoporose/tratamento farmacológico
11.
Acta Pharm Sin B ; 11(5): 1355-1361, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34094839

RESUMO

The recent discovery of activator compounds binding to an allosteric site on the NAD+-dependent protein lysine deacetylase, sirtuin 6 (SIRT6) has attracted interest and presents a pharmaceutical target for aging-related and cancer diseases. However, the mechanism underlying allosteric activation of SIRT6 by the activator MDL-801 remains largely elusive because no major conformational changes are observed upon activator binding. By combining molecular dynamics simulations with biochemical and kinetic analyses of wild-type SIRT6 and its variant M136A, we show that conformational rotation of 2-methyl-4-fluoro-5-bromo substituent on the right phenyl ring (R-ring) of MDL-801, which uncovers previously unseen hydrophobic interactions, contributes to increased activating deacetylation activity of SIRT6. This hypothesis is further supported by the two newly synthesized MDL-801 derivatives through the removal of the 5-Br atom on the R-ring (MDL-801-D1) or the restraint of the rotation of the R-ring (MDL-801-D2). We further propose that the 5-Br atom serves as an allosteric driver that controls the ligand allosteric efficacy. Our study highlights the effect of allosteric enzyme catalytic activity by activator binding and provides a rational approach for enhancing deacetylation activity.

12.
Molecules ; 26(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670371

RESUMO

Metastasis is the major cause of death in colorectal cancer and it has been proven that inhibiting an interaction between adenomatous polyposis coli (APC) and Rho guanine nucleotide exchange factor 4 (Asef) efficaciously restrain metastasis. However, current inhibitors cannot achieve a satisfying effect in vivo and need to be optimized. In the present study, we applied molecular dynamics (MD) simulations and extensive analyses to apo and holo APC systems in order to reveal the inhibitor mechanism in detail and provide insights into optimization. MD simulations suggested that apo APC takes on a broad array of conformations and inhibitors stabilize conformation selectively. Representative structures in trajectories show specific APC-ligand interactions, explaining the different binding process. The stability and dynamic properties of systems elucidate the inherent factors of the conformation selection mechanism. Binding free energy analysis quantitatively confirms key interface residues and guide optimization. This study elucidates the conformation selection mechanism in APC-Asef inhibition and provides insights into peptide-based drug design.


Assuntos
Proteína da Polipose Adenomatosa do Colo/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Peptídeos/química , Proteína da Polipose Adenomatosa do Colo/química , Proteína da Polipose Adenomatosa do Colo/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Ligantes , Simulação de Dinâmica Molecular , Metástase Neoplásica , Peptídeos/antagonistas & inibidores , Ligação Proteica/efeitos dos fármacos , Fatores de Troca de Nucleotídeo Guanina Rho/antagonistas & inibidores , Fatores de Troca de Nucleotídeo Guanina Rho/química , Fatores de Troca de Nucleotídeo Guanina Rho/genética
13.
Nat Commun ; 11(1): 4121, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807782

RESUMO

Vasoactive intestinal polypeptide receptor (VIP1R) is a widely expressed class B G protein-coupled receptor and a drug target for the treatment of neuronal, metabolic, and inflammatory diseases. However, our understanding of its mechanism of action and the potential of drug discovery targeting this receptor is limited by the lack of structural information of VIP1R. Here we report a cryo-electron microscopy structure of human VIP1R bound to PACAP27 and Gs heterotrimer, whose complex assembly is stabilized by a NanoBiT tethering strategy. Comparison with other class B GPCR structures reveals that PACAP27 engages VIP1R with its N-terminus inserting into the ligand binding pocket at the transmembrane bundle of the receptor, which subsequently couples to the G protein in a receptor-specific manner. This structure has provided insights into the molecular basis of PACAP27 binding and VIP receptor activation. The methodology of the NanoBiT tethering may help to provide structural information of unstable complexes.


Assuntos
Microscopia Crioeletrônica/métodos , Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Difusão Dinâmica da Luz , Humanos , Microscopia Eletrônica , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
14.
J Biomol Struct Dyn ; 38(1): 89-100, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30661457

RESUMO

Acute lymphocytic leukemia (ALL) is one of the most dangerous types of leukemia, and about 40% of them is Philadelphia chromosome-positive acute lymphocytic leukemia (Ph + ALL). Ph + ALL is caused by the fusion of the breakpoint cluster region (BCR) and the Ableson (ABL) genes, named the BCR-ABL fused gene that codes for an autonomously active tyrosine kinase. Tyrosine kinase inhibitors (TKIs) are among the first-line therapeutic agents for the treatment of Ph + ALL. Drug resistance are the major obstacle, limiting their clinical utility. The latest third-generation TKIs, ponatinib, can tackle most abnormal BCR-ABL kinases, including the T315I mutant that is resistant to first- and second-generations TKIs such as imatinib. However, drug resistance still emerges with the novel T315L mutation and the underlying mechanisms remain elusive. Here, using molecular dynamics (MD) simulations, we explored into the detailed interactions between ponatinib and BCR-ABL in the wild-type (WT), T315I, and T315L systems. The simulations revealed the significant conformational changes of ponatinib in its binding site due to the T315L mutation and the underlying structural mechanisms. Binding free energy analysis unveiled that the affinity of ponatinib to BCR-ABL decreased upon T315L mutation, which resulted in its unfavorable binding and drug resistance. Key residues responsible for the unfavored unbinding were also identified. This study elucidates the detailed mechanisms for the resistance of ponatinib in Ph + ALL triggered by the T315L mutation and will provide insights for future drug development and optimization.


Assuntos
Substituição de Aminoácidos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/química , Proteínas de Fusão bcr-abl/genética , Imidazóis/farmacologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Piridazinas/farmacologia , Algoritmos , Sítios de Ligação , Resistencia a Medicamentos Antineoplásicos/genética , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade
15.
Int J Biol Macromol ; 144: 643-655, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816384

RESUMO

Ras is a key member in the superfamily of small GTPase. Transforming between GTP-bound active state and GDP-bound inactive state in response to exogenous signals, Ras serves as a binary switch in various signaling pathways. One of its downstream effectors is phosphatidylinositol-4,5-bisphosphate 3-kinase α (PI3Kα), which phosphorylates phosphatidylinositol 4,5-bisphosphate into phosphatidylinositol 3,4,5-trisphosphate in the PI3K/Akt/mTOR pathway and mediates an array of important cellular activities including cell growth, migration and survival. Hyperactivation of PI3Kα induced by the Ras isoform K-Ras4B has been unveiled as a key event during the oncogenesis of pancreatic ductal adenocarcinoma, but the underlying mechanism of how K-Ras4B allosterically activates PI3Kα still remains largely unsolved. Here, we employed accelerated molecular dynamic simulations and allosteric pathway analysis to explore into the activation process of PI3Kα by K-Ras4B and unraveled the underlying structural mechanisms. We found that K-Ras4B binding induced more conformational dynamics within PI3Kα and triggered its step-wise transition from a self-inhibited state towards an activated state. Moreover, K-Ras4B binding markedly disrupted the interactions along the p110/p85 interface, especially the ones between nSH2 in p85 and its nearby functional domains in p110 like C2, helical, and kinase domains. The altered inter-domain interactions exposed the kinase domain, which promoted the membrane association and substrate phosphorylation of PI3Kα, thereby facilitating its activation. In particular, the community networks and allosteric pathways analysis further revealed that in PI3Kα/K-Ras4B system, allosteric signaling regulating p110/p85 interaction was rewired from the helical domain to the kinase domain and several important residues and their related allosteric pathways mediating PI3Kα autoinhibition were bypassed. The obtained structural mechanisms provide an in-depth mechanistic insight into the allosteric activation of PI3Kα by K-Ras4B as well as shed light on its drug discovery.


Assuntos
Proteínas Oncogênicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Regulação Alostérica , Simulação de Dinâmica Molecular , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Transdução de Sinais
16.
Drug Discov Today ; 25(1): 177-184, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634592

RESUMO

Allosteric drugs have several significant advantages over traditional orthosteric drugs, encompassing higher selectivity and lower toxicity. Although allosteric drugs have potential advantages as therapeutic agents to treat human diseases, allosteric drug-resistance mutations still occur, rendering these drugs ineffective. Here, we review the emergence of allosteric drug-resistance mutations with an emphasis on examples covering clinically important therapeutic targets, including Breakpoint cluster region-Abelson tyrosine kinase (Bcr-Abl), Akt kinase [also called Protein Kinase B (PKB)], isocitrate dehydrogenase (IDH), MAPK/ERK kinase (MEK), and SRC homology 2 domain-containing phosphatase 2 (SHP2). We also discuss challenges associated with tackling allosteric drug resistance and the possible strategies to overcome this issue.


Assuntos
Descoberta de Drogas , Resistência a Medicamentos/genética , Mutação , Humanos
17.
Nucleic Acids Res ; 48(D1): D394-D401, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31665428

RESUMO

Allosteric regulation is one of the most direct and efficient ways to fine-tune protein function; it is induced by the binding of a ligand at an allosteric site that is topographically distinct from an orthosteric site. The Allosteric Database (ASD, available online at http://mdl.shsmu.edu.cn/ASD) was developed ten years ago to provide comprehensive information related to allosteric regulation. In recent years, allosteric regulation has received great attention in biological research, bioengineering, and drug discovery, leading to the emergence of entire allosteric landscapes as allosteromes. To facilitate research from the perspective of the allosterome, in ASD 2019, novel features were curated as follows: (i) >10 000 potential allosteric sites of human proteins were deposited for allosteric drug discovery; (ii) 7 human allosterome maps, including protease and ion channel maps, were built to reveal allosteric evolution within families; (iii) 1312 somatic missense mutations at allosteric sites were collected from patient samples from 33 cancer types and (iv) 1493 pharmacophores extracted from allosteric sites were provided for modulator screening. Over the past ten years, the ASD has become a central resource for studying allosteric regulation and will play more important roles in both target identification and allosteric drug discovery in the future.


Assuntos
Regulação Alostérica , Bases de Dados de Proteínas , Proteínas/metabolismo , Regulação Alostérica/genética , Sítio Alostérico , Bases de Dados de Proteínas/estatística & dados numéricos , Descoberta de Drogas , Humanos , Canais Iônicos/química , Canais Iônicos/metabolismo , Mutação de Sentido Incorreto , Neoplasias/genética , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Proteínas/genética
18.
Pharmacol Ther ; 202: 1-17, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31233765

RESUMO

Ras, whose mutants are present in approximately 30% of human tumours, is one of the most important oncogenes. Drugging Ras is thus regarded as the quest for the Holy Grail in cancer therapeutics development. Despite more than three decades of efforts, drug discovery targeting Ras constantly fails, rendering Ras undruggable, due to its smooth surface and picomolar affinity towards guanosine substrates. The most frequently mutated isoform of Ras is K-Ras, accounting for >85% of Ras-driven cancers, and one majority of them is the G12C mutation. Recent advances in structural biology shed light on drugging Ras, and one of the cutting-edge breakthroughs is the design of covalent G12C-specific inhibitors targeting the mutated cysteine. This type of inhibitor can be classified into substrate-competitive orthosteric inhibitors and non-competitive allosteric inhibitors. They display improved selectivity and enhanced potency due to their G12-specific and irreversible covalent binding nature. Thus, they represent a new hope for revolutionizing the conventional characterization of Ras as "undruggable" and pave a promising avenue for further drug discovery. Here, we provide comprehensive structural and medicinal chemical insights into K-Ras covalent inhibitors specific for the G12C mutant. We first present an in-depth analysis of the conformations of the inhibitor binding pockets. Then, all the latest covalent ligands selectively inhibiting K-RasG12C are reviewed. Finally, we examine the current challenges faced by this new class of anti-Ras inhibitors.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Proteínas ras/antagonistas & inibidores , Animais , Descoberta de Drogas/métodos , Humanos , Mutação/efeitos dos fármacos , Mutação/genética , Neoplasias/genética , Oncogenes/genética , Proteínas ras/genética
19.
J Med Chem ; 62(14): 6405-6421, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30817889

RESUMO

Allosteric modulators bound to structurally diverse allosteric sites can achieve better pharmacological advantages than orthosteric ligands. The discovery of allosteric modulators, however, has been traditionally serendipitous, owing to the complex nature of allosteric modulation. Recent advances in the understanding of allosteric regulatory mechanisms and remarkable availability of structural data of allosteric proteins and modulators, as well as their complexes, have greatly contributed to the development of various computational approaches to guide the structure-based discovery of allosteric modulators. This Perspective first outlines the evolution of the allosteric concept and describes the advantages and hurdles facing allosteric modulator discovery. The current available computational approaches, together with experimental approaches aiming to highlight allosteric studies, are then highlighted, emphasizing successful examples with their combined applications. We aimed to increase the awareness of the feasibility of the structure-based discovery of allosteric modulators using an integrated computational and experimental paradigm.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Descoberta de Drogas/métodos , Cristalografia por Raios X , Desenho de Fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/química , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Ligantes , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
J Biomol Struct Dyn ; 37(10): 2733-2744, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30052122

RESUMO

Protein kinases are critical drug targets against cancer. Since the discovery of Gleevec, a specific inhibitor of Abl kinase, the capability of this drug to distinguish between Abl and other tyrosine kinases, such as Src, has been intensely investigated but the origin of Gleevec's selectivity to Abl against Src is less studied. Here, we performed molecular dynamics (MD) simulations, dynamical cross-correlation matrices (DCCM), dynamical network analysis, and binding free energy calculations to explore Gleevec's selectivity based on the crystal structures of Abl, Src, and their common ancestors (ANC-AS) and the two constructed mutation systems (AS→Abl and AS→Src). MD simulations revealed that the conformation of the phosphate-binding loop (P-loop) was altered significantly in the AS→Abl system. DCCM results unraveled that mutations increased anticorrelated motions in the AS→Abl system. Community network analysis suggested that the P-loop established special contacts in the AS→Abl system that are devoid in the AS→Src system. The binding free energy calculations unveiled that the affinity of Gleevec to AS→Abl increased to near the Abl level, whereas its affinity to AS→Src decreased to near the Src level. Analysis of individual residue contributions showed that the differences were located mainly at the P-loop. This study is valuable for understanding the sensitivity of Gleevec to human tyrosine kinases. Communicated by Ramaswamy H. Sarma.


Assuntos
Mesilato de Imatinib/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/química , Algoritmos , Sítios de Ligação , Humanos , Mesilato de Imatinib/farmacologia , Ligantes , Conformação Molecular , Mutação , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA