Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(15): 8569-8580, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563891

RESUMO

Rice protein peptides (RPP) are a potentially valuable source of high-quality calcium chelating properties. However, there is a lack of information regarding the calcium-absorption-promoting effect of RPP and its underlying mechanism. The present study adopted molecular docking methodologies to analyze the 10 most potent peptide segments from RPP. Results revealed that the peptide AHVGMSGEEPE (AHV) displayed optimal calcium binding properties (calcium-chelating capacity 55.69 ± 0.66 mg/g). Quantum chemistry analysis revealed that the AHV peptide effectively binds and forms stable complexes with calcium via the carbonyl oxygen atoms in valine at position 3 and the carbonyl of the C-terminal carboxyl group of glutamate at position 11. The spectral analysis results indicated that AHV may bind to calcium through carboxyl oxygen atoms, resulting in a transition from a smooth surface block-like structure to a dense granular structure. Furthermore, this study demonstrated that the 4 mmol/L AHV-Ca chelate (61.75 ± 13.23 µg/well) significantly increases calcium absorption compared to 1 mM CaCl2 (28.57 ± 8.59 µg/well) in the Caco-2 cell monolayer. In terms of mechanisms, the novel peptide-calcium chelate AHV-Ca derived from RPP exerts a cell-level effect by upregulating the expression of TRPV6 calcium-ion-channel-related genes and proteins (TRPV6 and Calbindin-D9k). This study provides a theoretical basis for developing functional foods with the AHV peptide as ingredients to improve calcium absorption.


Assuntos
Cálcio , Oryza , Humanos , Cálcio/metabolismo , Células CACO-2 , Oryza/metabolismo , Simulação de Acoplamento Molecular , Cálcio da Dieta/metabolismo , Peptídeos/química , Oxigênio
2.
Foods ; 13(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38254526

RESUMO

Wheat bran (WB) is the primary by-product of wheat processing and contains a high concentration of bioactive substances such as polyphenols. This study analyzed the qualitative and quantitative components of polyphenols in wheat bran and their effects on ulcerative colitis (UC) using the dextran sulfate sodium (DSS)-induced colitis model in mice. The potential mechanism of wheat bran polyphenols (WBP) was also examined. Our findings indicate that the main polyphenol constituents of WBP were phenolic acids, including vanillic acid, ferulic acid, caffeic acid, gallic acid, and protocatechuic acid. Furthermore, WBP exerted remarkable protective effects against experimental colitis. This was achieved by reducing the severity of colitis and improving colon morphology. Additionally, WBP suppressed colonic inflammation via upregulation of the anti-inflammatory cytokine IL-10 and downregulation of pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß) in colon tissues. Mechanistically, WBP ameliorated DSS-induced colitis in mice by inhibiting activation of the MAPK/NF-κB pathway. In addition, microbiome analysis results suggested that WBP modulated the alteration of gut microbiota caused by DSS, with an enhancement in the ratio of Firmicutes/Bacteroidetes and adjustments in the number of Helicobacter, Escherichia-Shigella, Akkermansia, Lactobacillus, Lachnospiraceae_NK4A136_group at the genus level. To conclude, the findings showed that WBP has excellent prospects in reducing colonic inflammation in UC mice.

3.
Food Res Int ; 163: 112122, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596090

RESUMO

Durian is a nutritious tropical fruit with potent antioxidant, anti-inflammatory, antibacterial and anti-cancer effects. However, the durian shell was mainly discarded as waste, while there were few studies on the characterization of its phenolic profiles, antioxidant activities, and in vivo metabolites. In the present study, a total of 17 compounds were identified in durian shell extract (DSE) by using an ultra-high-performance liquid chromatography coupled with linear ion trap quadrupole Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap-MS/MS), while 33 metabolites were found in rats' plasma, urine and organ. Moreover, DSE could effectively reduce H2O2-induced oxidative damage in HepG2 cells, reduce the expression of Reactive Oxygen Species (ROS), Malondialdehyde (MDA) and Lactate Dehydrogenase (LDH) and inhibit apoptosis by regulating the expression of Bcl-2-Associated X (BAX), B-Cell Lymphoma 2 (BCL-2), Caspase-3 and Caspase-9 genes and proteins related to mitochondrial pathway apoptosis. This is the first comprehensive report on Durian shell phenolics, their metabolic profiles and underlying mechanisms of the in vitro antioxidant activities.


Assuntos
Antioxidantes , Bombacaceae , Ratos , Animais , Humanos , Antioxidantes/análise , Bombacaceae/química , Peróxido de Hidrogênio/metabolismo , Espectrometria de Massas em Tandem , Células Hep G2 , Fenóis/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA