Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fitoterapia ; 155: 105063, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34655700

RESUMO

Five new spirocyclic polycyclic polyprenylated acylphloroglucinols, Hyperpatulones C-G (1-5), were obtained from the leaves of Hypericum patulum. Their structures were characterized by the comprehensive analysis of their IR, NMR, CD spectra and HRESIMS data. All the new compounds were evaluated for the α-glycosidase inhibitory activities. Among them, compounds 3-5 showed α-glucosidase inhibitory activities, with IC50 values of 14.06-37.69 µM.


Assuntos
Inibidores de Glicosídeo Hidrolases/farmacologia , Hypericum/química , Floroglucinol/farmacologia , China , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Estrutura Molecular , Floroglucinol/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , alfa-Glucosidases
2.
CNS Neurosci Ther ; 26(9): 902-912, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32329577

RESUMO

AIMS: Failure of neural tube closure resulting from excessive apoptosis leads to neural tube defects (NTDs). NADPH oxidase 4 (NOX4) is a critical mediator of cell growth and death, yet its role in NTDs has never been characterized. NOX4 is a potential target of miR-322, and we have previously demonstrated that miR-322 was involved in high glucose-induced NTDs. In this study, we investigated the effect of NOX4 on the embryonic neuroepithelium in NTDs and reveal a new regulatory mechanism for miR-322 that disrupts neurulation by ameliorating cell apoptosis. METHODS: All-trans-retinoic acid (ATRA)-induced mouse model was utilized to study NTDs. RNA pull-down and dual-luciferase reporter assays were used to confirm the interaction between NOX4 and miR-322. In mouse neural stem cells and whole-embryo culture, Western blot and TUNEL were carried out to investigate the effects of miR-322 and NOX4 on neuroepithelium apoptosis in NTD formation. RESULTS: NOX4, as a novel target of miR-322, was upregulated in ATRA-induced mouse model of NTDs. In mouse neural stem cells, the expression of NOX4 was inhibited by miR-322; still further, NOX4-triggered apoptosis was also suppressed by miR-322. Moreover, in whole-embryo culture, injection of the miR-322 mimic into the amniotic cavity attenuated cell apoptosis in NTD formation by silencing NOX4. CONCLUSION: miR-322/NOX4 plays a crucial role in apoptosis-induced NTD formation, which may provide a new understanding of the mechanism of embryonic NTDs and a basis for potential therapeutic target against NTDs.


Assuntos
Apoptose/fisiologia , Inativação Gênica/fisiologia , MicroRNAs/administração & dosagem , NADPH Oxidase 4/antagonistas & inibidores , NADPH Oxidase 4/biossíntese , Defeitos do Tubo Neural/enzimologia , Animais , Células Cultivadas , Desenvolvimento Embrionário/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , NADPH Oxidase 4/genética , Defeitos do Tubo Neural/diagnóstico por imagem , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/terapia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA