Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 277: 116358, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38653025

RESUMO

Exposure to nicotine by cigarette smoking have shown strongly defectives on the physiological function of ovaries, which in turn leads to disorders of fertility in women. However, the potential molecular mechanisms remain to be elucidated. In this study, we notably found that nicotine was likely to specifically raise the expression of histone deacetylase 3 (HDAC3) to promote the apoptosis and autophagy of granulosa cells (GCs) and block follicular maturation. Moreover, prostaglandin E2 (PGE2) inhibited the apoptosis of GCs and facilitated follicular maturation, and nicotine appeared to inhibit PGE2 secretion by freezing the expression of cyclooxygenase 1 (COX1), which was the rate-limiting and essential enzyme for PGE2 synthesis. Epigenetically, the nicotine was observed to diminish the histone H3 lysine 9 acetylation (H3K9ac) level and compact the chromatin accessibility in -1776/-1499 bp region of COX1 by evoking the expression of HDAC3, with the deactivated Cas9-HDAC3/sgRNA system. Mechanistically, the COX1 protein was found to pick up and degrade the autophagy related protein beclin 1 (BECN1) to control the autophagy of GCs. These results provided a potential new molecular therapy to recover the damage of female fertility induced by nicotine from cigarette smoking.


Assuntos
Autofagia , Dinoprostona , Células da Granulosa , Nicotina , Feminino , Autofagia/efeitos dos fármacos , Animais , Nicotina/toxicidade , Células da Granulosa/efeitos dos fármacos , Dinoprostona/metabolismo , Camundongos , Histona Desacetilases/metabolismo , Folículo Ovariano/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 1/genética
2.
Cell Death Differ ; 30(2): 576-588, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566296

RESUMO

DNA methylation and long noncoding RNAs (lncRNAs) exhibit an indispensable role in follicular development. However, the specific mechanisms regarding lncRNAs mediated by DNA methylation in follicular development remain unclearly. In this study, we found that inhibiting the expression of DNMT1 promoted granulosa cells (GCs) apoptosis to inhibit follicular development. A novel follicular development-associated lncRNA named inhibitory factor of follicular development (IFFD) was mediated by DNMT1 and showed to arrest follicular development by inhibiting GCs proliferation and estrogen (E2) secretion but promoting GCs apoptosis. Mechanistically, the deactivated Cas9-TET1 demonstrated that the hypomethylation in -1261/-1254 region of IFFD promoted the transcription of IFFD by recruiting SP1. IFFD induced the expression of GLI family zinc finger 1 through competitive binding miR-370, thereby up-regulating the expression of CASP3 to promote GCs apoptosis, as well as downregulating the expressions of PCNA and CYP19A1 to inhibit GCs proliferation and E2 secretion. Collectively, DNMT1-mediated IFFD might be a novel target for the regulation of follicular development.


Assuntos
MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Células da Granulosa/metabolismo , Apoptose/genética , Proliferação de Células/genética
3.
Cell Death Dis ; 12(7): 653, 2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34175894

RESUMO

In female mammals, the proliferation, apoptosis, and estradiol-17ß (E2) secretion of granulosa cells (GCs) have come to decide the fate of follicles. DNA methylation and RSPO2 gene of Wnt signaling pathway have been reported to involve in the survival of GCs and follicular development. However, the molecular mechanisms for how DNA methylation regulates the expression of RSPO2 and participates in the follicular development are not clear. In this study, we found that the mRNA and protein levels of RSPO2 significantly increased during follicular development, but the DNA methylation level of RSPO2 promoter decreased gradually. Inhibition of DNA methylation or DNMT1 knockdown could decrease the methylation level of CpG island (CGI) in RSPO2 promoter and upregulate the expression level of RSPO2 in porcine GCs. The hypomethylation of -758/-749 and -563/-553 regions in RSPO2 promoter facilitated the occupancy of transcription factor E2F1 and promoted the transcriptional activity of RSPO2. Moreover, RSPO2 promoted the proliferation of GCs with increasing the expression level of PCNA, CDK1, and CCND1 and promoted the E2 secretion of GCs with increasing the expression level of CYP19A1 and HSD17B1 and inhibited the apoptosis of GCs with decreasing the expression level of Caspase3, cleaved Caspase3, cleaved Caspase8, cleaved Caspase9, cleaved PARP, and BAX. In addition, RSPO2 knockdown promoted the apoptosis of GCs, blocked the development of follicles, and delayed the onset of puberty with decreasing the expression level of Wnt signaling pathway-related genes (LGR4 and CTNNB1) in vivo. Taken together, the hypomethylation of -758/-749 and -563/-553 regions in RSPO2 promoter facilitated the occupancy of E2F1 and enhanced the transcription of RSPO2, which further promoted the proliferation and E2 secretion of GCs, inhibited the apoptosis of GCs, and ultimately ameliorated the development of follicles through Wnt signaling pathway. This study will provide useful information for further exploration on DNA-methylation-mediated RSPO2 pathway during follicular development.


Assuntos
Metilação de DNA , Epigênese Genética , Folículo Ovariano/metabolismo , Trombospondinas/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Ilhas de CpG , Estradiol/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Desenvolvimento Sexual , Sus scrofa , Trombospondinas/genética , Ativação Transcricional , Via de Sinalização Wnt
4.
Genes (Basel) ; 11(5)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365901

RESUMO

H3K27me3 is an epigenetic modification that results in the repression of gene transcription. The transcription factor RUNX1 (the runt-related transcription factor 1) influences granulosa cells' growth and ovulation. This research uses ELISA, flow cytometry, EDU, ChIP-PCR, WB and qPCR to investigate steroidogenesis, cell apoptosis, and the proliferation effect of RUNX1 in porcine granulosa cells (pGCs) as regulated by H3K27me3. Decreased H3K27me3 stimulates the expression of steroidogenesis-related genes, including CYP11A1, PTGS2, and STAR, as well as prostaglandin. H3K27me3 transcriptionally represses RUNX1 here, whereas RUNX1 acts as an activator of FSHR, CYP11A1, and CYP19A1, promoting the production of androgen, estrogen, and prostaglandin, as well as increasing anti-apoptotic and cell proliferation activity, but decreasing progesterone. Both the complementary recovery of the H3K27me3 antagonist with the siRUNX1 signal, and the H3K27me3 agonist with the RUNX1 signal to maintain RUNX1 lead to the activation of CYP19A1, ER1, HSD17ß4, and STAR here. Androgen and prostaglandin are significantly repressed but progesterone is markedly increased with the antagonist and siRUNX1. Prostaglandin is significantly promoted with the agonist and RUNX1. Furthermore, H3K27me3-RUNX1 affects the anti-apoptotic activity and stimulation of proliferation in pGCs. The present work verifies the transcriptional suppression of RUNX1 by H3K27me3 during antral follicular development and maturation, which determines the levels of hormone synthesis and cell apoptosis and proliferation in the pGC microenvironment.


Assuntos
Proliferação de Células/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Histona Desmetilases com o Domínio Jumonji/genética , Esteroides/biossíntese , Apoptose/genética , Estrogênios/biossíntese , Estrogênios/genética , Feminino , Hormônio Foliculoestimulante/biossíntese , Hormônio Foliculoestimulante/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células da Granulosa/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Ovulação/genética , Progesterona/biossíntese , Progesterona/genética , RNA Mensageiro/genética , Esteroides/metabolismo
5.
Cells ; 8(11)2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671754

RESUMO

In female mammals, the abnormal apoptosis of ovarian granulosa cells (GCs) impairs follicular development and causes reproductive dysfunction. Many studies have indicated that the FGFR1 gene of the PI3K signaling pathway and the p65 subunit of the transcription factor NF-κB may regulate the proliferation and apoptosis of GCs involved in follicular development. However, little is known about whether p65 regulates the transcription of FGFR1, as well as the biological effects of p65 and FGFR1 on the survival of GCs and follicular development. In porcine follicles and GCs, we found that p65 and FGFR1 were exclusively expressed in the GCs of follicles, and the mRNA and protein levels of p65 and FGFR1 significantly increased from small to large follicles. Both p65 and FGFR1 were found to activate the PI3K signaling pathway, and the expressions of proliferation markers (PCNA and MKI67) and the anti-apoptotic gene BCL2 were significantly increased by p65 and FGFR1. Furthermore, both p65 and FGFR1 were observed to promote cell proliferation and inhibit the cell apoptosis of GCs, and p65 was confirmed to bind at the -348/-338 region of FGFR1 to positively regulate its transcription. Moreover, p65 was further found to enhance the pro-proliferation and anti-apoptotic effects of FGFR1. Taken together, p65 may target the -348/-338 region of FGFR1, promote the transcription of FGFR1, and enhance the pro-proliferation effect and anti-apoptotic effect of FGFR1 to facilitate the growth of follicles. This study will provide useful information for further investigations on the p65-mediated-FGFR1 signaling pathway during folliculogenesis in mammals.


Assuntos
Células da Granulosa/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Fator de Transcrição RelA/fisiologia , Animais , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Oogênese/genética , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Ovário/citologia , Ovário/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Suínos
6.
Asian-Australas J Anim Sci ; 32(4): 494-500, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30381748

RESUMO

OBJECTIVE: Feed consumption contributes a large percentage for total production costs in the poultry industry. Detecting genes associated with feeding traits will be of benefit to improve our understanding of the molecular determinants for feed efficiency. The objective of this study was to identify candidate genes associated with feed conversion ratio (FCR) via genome-wide association study (GWAS) using sequence data imputed from single nucleotide polymorphism (SNP) panel in a Chinese indigenous chicken population. METHODS: A total of 435 Chinese indigenous chickens were phenotyped for FCR and were genotyped using a 600K SNP genotyping array. Twenty-four birds were selected for sequencing, and the 600K SNP panel data were imputed to whole sequence data with the 24 birds as the reference. The GWAS were performed with GEMMA software. RESULTS: After quality control, 8,626,020 SNPs were used for sequence based GWAS, in which ten significant genomic regions were detected to be associated with FCR. Ten candidate genes, ubiquitin specific peptidase 44, leukotriene A4 hydrolase, ETS transcription factor, R-spondin 2, inhibitor of apoptosis protein 3, sosondowah ankyrin repeat domain family member D, calmodulin regulated spectrin associated protein family member 2, zinc finger and BTB domain containing 41, potassium sodium-activated channel subfamily T member 2, and member of RAS oncogene family were annotated. Several of them were within or near the reported FCR quantitative trait loci, and others were newly reported. CONCLUSION: Results from this study provide valuable prior information on chicken genomic breeding programs, and potentially improve our understanding of the molecular mechanism for feeding traits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA