Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Environ Res ; 249: 118402, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309560

RESUMO

Microcystins (MC)-RR is a significant analogue of MC-LR, which has been identified as a hepatotoxin capable of influencing lipid metabolism and promoting the progression of liver-related metabolic diseases. However, the toxicity and biological function of MC-RR are still not well understood. In this study, the toxic effects and its role in lipid metabolism of MC-RR were investigated in hepatoblastoma cells (HepG2cells). The results demonstrated that MC-RR dose-dependently reduced cell viability and induced apoptosis. Additionally, even at low concentrations, MC-RR promoted lipid accumulation through up-regulating levels of triglyceride, total cholesterol, phosphatidylcholines and phosphatidylethaolamine in HepG2 cells, with no impact on cell viability. Proteomics and transcriptomics analysis further revealed significant alterations in the protein and gene expression profiles in HepG2 cells treated with MC-RR. Bioinformatic analysis, along with subsequent validation, indicated the upregulation of CD36 and activation of the AMPK and PI3K/AKT/mTOR in response to MC-RR exposure. Finally, knockdown of CD36 markedly ameliorated MC-RR-induced lipid accumulation in HepG2 cells. These findings collectively suggest that MC-RR promotes lipid accumulation in HepG2 cells through CD36-mediated signal pathway and fatty acid uptake. Our findings provide new insights into the hepatotoxic mechanism of MC-RR.


Assuntos
Antígenos CD36 , Ácidos Graxos , Metabolismo dos Lipídeos , Microcistinas , Transdução de Sinais , Humanos , Células Hep G2 , Antígenos CD36/metabolismo , Antígenos CD36/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Microcistinas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Ácidos Graxos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos
2.
J Hazard Mater ; 460: 132512, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703740

RESUMO

Pseudomonas aeruginosa, a versatile bacterium, has dual significance because of its beneficial roles in environmental soil processes and its detrimental effects as a nosocomial pathogen that causes clinical infections. Understanding adaptability to environmental stress is essential. This investigation delves into the complex interplay of two-component system (TCS), specifically ParRS and CprRS, as P. aeruginosa interprets host signals and navigates stress challenges. In this study, through phenotypic and proteomic analyses, the nuanced contributions of ParRS and CprRS to the pathogenesis and resilience mechanisms were elucidated. Furthermore, the indispensable roles of the ParS and CprS extracellular sensor domains in orchestrating signal perception remain unknown. Structural revelations imply a remarkable convergence of TCS sensors in interacting with host peptides, suggesting evolutionary strategies for bacterial adaptation. This pioneering work not only established links between cationic antimicrobial peptide (CAMP) resistance-associated TCSs and virulence modulation in nosocomial bacteria, but also transcended conventional boundaries. These implications extend beyond clinical resistance, permeating into the realm of soil revitalization and environmental guardianship. As it unveils P. aeruginosa intricacies, this study assumes a mantle of guiding strategies to mitigate clinical hazards, harness environmental advantages, and propel sustainable solutions forward.


Assuntos
Infecção Hospitalar , Pseudomonas aeruginosa , Humanos , Virulência , Proteômica , Peptídeos , Solo
3.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835382

RESUMO

Targeting of the PD-1/PD-L1 immunologic checkpoint is believed to have provided a real breakthrough in the field of cancer therapy in recent years. Due to the intrinsic limitations of antibodies, the discovery of small-molecule inhibitors blocking PD-1/PD-L1 interaction has gradually opened valuable new avenues in the past decades. In an effort to discover new PD-L1 small molecular inhibitors, we carried out a structure-based virtual screening strategy to rapidly identify the candidate compounds. Ultimately, CBPA was identified as a PD-L1 inhibitor with a KD value at the micromolar level. It exhibited effective PD-1/PD-L1 blocking activity and T-cell-reinvigoration potency in cell-based assays. CBPA could dose-dependently elevate secretion levels of IFN-γ and TNF-α in primary CD4+ T cells in vitro. Notably, CBPA exhibited significant in vivo antitumor efficacy in two different mouse tumor models (a MC38 colon adenocarcinoma model and a melanoma B16F10 tumor model) without the induction of observable liver or renal toxicity. Moreover, analyses of the CBPA-treated mice further showed remarkably increased levels of tumor-infiltrating CD4+ and CD8+ T cells and cytokine secretion in the tumor microenvironment. A molecular docking study suggested that CBPA embedded relatively well into the hydrophobic cleft formed by dimeric PD-L1, occluding the PD-1 interaction surface of PD-L1. This study suggests that CBPA could work as a hit compound for the further design of potent inhibitors targeting the PD-1/PD-L1 pathway in cancer immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Animais , Camundongos , Adenocarcinoma/metabolismo , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias do Colo/metabolismo , Simulação de Acoplamento Molecular , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral , Inibidores de Checkpoint Imunológico/química , Inibidores de Checkpoint Imunológico/farmacologia
4.
Nucleic Acids Res ; 50(18): 10586-10600, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36200834

RESUMO

Type II toxin-antitoxin (TA) systems are widely distributed in bacterial and archaeal genomes and are involved in diverse critical cellular functions such as defense against phages, biofilm formation, persistence, and virulence. GCN5-related N-acetyltransferase (GNAT) toxin, with an acetyltransferase activity-dependent mechanism of translation inhibition, represents a relatively new and expanding family of type II TA toxins. We here describe a group of GNAT-Xre TA modules widely distributed among Pseudomonas species. We investigated PacTA (one of its members encoded by PA3270/PA3269) from Pseudomonas aeruginosa and demonstrated that the PacT toxin positively regulates iron acquisition in P. aeruginosa. Notably, other than arresting translation through acetylating aminoacyl-tRNAs, PacT can directly bind to Fur, a key ferric uptake regulator, to attenuate its DNA-binding affinity and thus permit the expression of downstream iron-acquisition-related genes. We further showed that the expression of the pacTA locus is upregulated in response to iron starvation and the absence of PacT causes biofilm formation defect, thereby attenuating pathogenesis. Overall, these findings reveal a novel regulatory mechanism of GNAT toxin that controls iron-uptake-related genes and contributes to bacterial virulence.


Assuntos
Antitoxinas , Toxinas Bacterianas , Acetiltransferases/metabolismo , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Homeostase/genética , Ferro/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
5.
Eur J Med Chem ; 227: 113888, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34628244

RESUMO

Although gastric cancer has become a major public health problem, oral agents applied in clinics for gastric cancer therapy are scarce. Therefore, to explore new oral chemical entities with high efficiency and low toxicity, 41 o-aminobenzamide derivatives based on the scaffolds of MS-275 and SAHA were designed, synthesized, and evaluated for their anti-gastric cancer abilities in vitro and in vivo. Structure-activity relationships were discussed, leading to the identification of compounds F8 (IC50 = 0.28 µM against HGC-27 cell) and T9 (IC50 = 1.84 µM against HGC-27 cell) with improved cytotoxicity, anti-gastric cancer proliferation potency, induction of cell apoptosis and cell cycle arrest ability, inhibition of cell migration and invasion. What is worth mentioning is that compound F8 was more efficient and less toxic than the positive drug capecitabine in vivo on the HGC-27-xenograft model. Meanwhile, compound F8 exhibited suitable pharmacokinetic properties and less acute toxicity (LD50 > 1000 mg/kg). Besides, western blotting analysis, IHC analysis, differentially expressed proteins analysis and ABPP experiment indicated that compound F8 could modulate molecular pathways involved in apoptosis and cell cycle progression. Consequently, compound F8 is a strong candidate for the development of human gastric cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Desenho de Fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzamidas/síntese química , Benzamidas/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Células Tumorais Cultivadas
6.
Sci Rep ; 11(1): 20929, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686717

RESUMO

The research is executed to analyze the connection between genomic instability-associated long non-coding RNAs (lncRNAs) and the prognosis of cervical cancer patients. We set a prognostic model up and explored different risk groups' features. The clinical datasets and gene expression profiles of 307 patients have been downloaded from The Cancer Genome Atlas database. We established a prognostic model that combined somatic mutation profiles and lncRNA expression profiles in a tumor genome and identified 35 genomic instability-associated lncRNAs in cervical cancer as a case study. We then stratified patients into low-risk and high-risk groups and were further checked in multiple independent patient cohorts. Patients were separated into two sets: the testing set and the training set. The prognostic model was built using three genomic instability-associated lncRNAs (AC107464.2, MIR100HG, and AP001527.2). Patients in the training set were divided into the high-risk group with shorter overall survival and the low-risk group with longer overall survival (p < 0.001); in the meantime, similar comparable results were found in the testing set (p = 0.046), whole set (p < 0.001). There are also significant differences in patients with histological grades, FIGO stages, and different ages (p < 0.05). The prognostic model focused on genomic instability-associated lncRNAs could predict the prognosis of cervical cancer patients, paving the way for further research into the function and resource of lncRNAs, as well as a key approach to customizing individual care decision-making.


Assuntos
Instabilidade Genômica/genética , RNA Longo não Codificante/genética , Neoplasias do Colo do Útero/genética , Biomarcadores Tumorais/genética , Biologia Computacional/métodos , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Transcriptoma/genética , Neoplasias do Colo do Útero/patologia
7.
Comput Struct Biotechnol J ; 19: 4079-4091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34401048

RESUMO

FKBP51 is well-known as a cochaperone of Hsp90 machinery and implicated in many human diseases including stress-related diseases, tau-mediated neurodegeneration and cancers, which makes FKBP51 an attractive drug target for the therapy of FKBP51-associated diseases. However, it has been reported that only nature product rapamycin, cyclosporine A, FK506 and its derivatives exhibit good binding affinities when bound to FKBP51 by now. Given the advantages of peptide-inhibitors, we designed and obtained 20 peptide-inhibitor hits through structure-based drug design. We further characterized the interaction modes of the peptide-inhibitor hits on the FK1 domain of FKBP51 by biochemical and structural biology methods. Structural analysis revealed that peptide-inhibitor hits form U-shaped conformations and occupy the FK506 binding pocket and share similar interaction modes with FK506. Using molecular dynamics simulations, we delved into the interaction dynamics and found that hits are anchored to the FK506 binding pocket in a quite stable conformation. Meanwhile, it was shown that interactions between FK1 and peptide-inhibitor hits are mainly attributed to the hydrogen bond networks comprising I87 and Y113 and FPF cores of peptide-inhibitors involved extensive hydrophobic interactions. We presumed that the peptide design strategy based on the small molecule structure probably shed new lights on the peptide-inhibitor discovery of other targets. The findings presented here could also serve as a structural basis and starting point facilitating the optimization and generation of FKBP51 peptide-inhibitors with better bio-activities.

8.
Neoplasia ; 23(3): 281-293, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33529880

RESUMO

Blockade of the PD-1/PD-L1 immunologic checkpoint using monoclonal antibodies has provided breakthrough therapies against cancer in the recent years. Nevertheless, intrinsic disadvantages of therapeutic antibodies may limit their applications. Thus, blocking of the PD-1/PD-L1 interaction by small molecules may be a promising alternative for cancer immunotherapy. We used a docking-based virtual screening strategy to rapidly identify new small molecular inhibitors targeting PD-L1. We demonstrated that a small molecule compound (N-[2-(aminocarbonyl)phenyl][1,1'-biphenyl]-4-carboxamide [APBC]) could effectively interrupt the PD-1/PD-L1 interaction by directly binding to PD-L1, presenting the KD and IC50 values at low-micromolar level. Molecular docking study revealed that APBC may have function through a PD-L1 dimer-locking mechanism, occluding the PD-1 interaction surface of PD-L1. We further confirmed the ligand blocking activity and T cell-reinvigoration potency of APBC using cell-based assays. APBC could dose-dependently elevate cytokine secretions of the primary T-lymphocytes that are cocultured with cancer cells. Importantly, APBC displayed superior antitumor efficacy in hPD-L1 knock-in B16F10-bearing mouse model without the induction of observable liver toxicity. Analyses on the APBC-treated mice further revealed drastically elevated levels of infiltrating CD4+ and CD8+ T cells, and inflammatory cytokines production in tumor microenvironment. The APBC compound could serve as a privileged scaffold in the design of improved PD pathway modulators, thus providing us promising drug candidates for tumor immunotherapy.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Descoberta de Drogas , Inibidores de Checkpoint Imunológico/farmacologia , Animais , Antineoplásicos Imunológicos , Antígeno B7-H1/química , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/química , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Melanoma Experimental , Camundongos , Modelos Moleculares , Ligação Proteica , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Front Microbiol ; 11: 1423, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733400

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen commonly infecting immunocompromised patients with diseases like cystic fibrosis (CF) and cancers and has high rates of recurrence and mortality. The treatment efficacy can be significantly worsened by the multidrug resistance (MDR) of P. aeruginosa, and there is increasing evidence showing that it is easy for this pathogen to develop MDR. Here, we identified a gene cluster, pltZ-pltIJKNOP, which was originally assumed to be involved in the biosynthesis of an antimicrobial pyoluteorin, significantly contributing to the antibiotic resistance of P. aeruginosa ATCC 27853. Moreover, the TetR family regulator PltZ binds to a semi-palindromic sequence in the promoter region of the pltIJKNOP operon and recognizes the antimicrobial 2,4-diacetylphloroglucinol (2,4-DAPG), which in turn induces the expression of the pltIJKNOP operon. Using quantitative proteomics method, it was indicated that the regulator PltZ also plays an important role in maintaining metabolic hemostasis by regulating the transporting systems of amino acids, glucose, metal ions, and bacteriocins.

10.
Biochem Biophys Rep ; 23: 100778, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32695889

RESUMO

Reactivation of the androgen receptor signaling pathway in the emasculated environment is the main reason for the occurrence of castration-resistant prostate cancer (CRPC). The immunophilin FKBP51, as a co-chaperone protein, together with Hsp90 help the correct folding of AR. Rapamycin is a known small-molecule inhibitor of FKBP51, but its effect on the FKBP51/AR signaling pathway is not clear. In this study, the interaction mechanism between FKBP51 and rapamycin was investigated using steady-state fluorescence quenching, X-ray crystallization, MTT assay, and qRT-PCR. Steady-state fluorescence quenching assay showed that rapamycin could interact with FKBP51. The crystal of the rapamycin-FKBP51 complex indicated that rapamycin occupies the hydrophobic binding pocket of FK1 domain which is vital for AR activity. The residues involving rapamycin binding are mainly hydrophobic and may overlap with the AR interaction site. Further assays showed that rapamycin could inhibit the androgen-dependent growth of human prostate cancer cells by down-regulating the expression levels of AR activated downstream genes. Taken together, our study demonstrates that rapamycin suppresses AR signaling pathway by interfering with the interaction between AR and FKBP51. The results of this study not only can provide useful information about the interaction mechanism between rapamycin and FKBP51, but also can provide new clues for the treatment of prostate cancer and castration-resistant prostate cancer.

11.
Sci Rep ; 7(1): 15481, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133854

RESUMO

Microbes can reduce hexavalent chromium Cr (VI) to the less toxic and soluble trivalent Cr (III). Copper stimulates microbial reduction of Cr (VI) by the Bacillus, Ochrobactrum, and Gluconobacter species; however, the mechanism remains unclear. In our study, the rate of Cr (VI) reduction by Staphylococcus aureus LZ-01 was increased by 210 % when supplemented with 60 µM Cu (II). A putative NAD(P)H-flavin oxidoreductase gene (nfoR) was upregulated under Cr (VI) stress. NfoR-knockout mutant displayed impaired reduction of Cr (VI) and Cu (II)-enhanced Cr (VI) reduction by nfoR isogenic mutant was attenuated in the presence of Cu (II). In vitro tests showed an increased V max value of 25.22 µM min-1 mg-1 NfoR in the presence of Cu (II). Together, these results indicate that NfoR is responsible for Cu (II) enhancement. Isothermal titration calorimetry (ITC) assays confirmed the interaction of NfoR with Cu (II) at the dissociation constant of 85.5 µM. Site-directed mutagenesis indicates that His100, His128, and Met165 residues may be important for Cu (II) binding, while Cys163 is necessary for the FMN binding of NfoR. These findings show that Cu (II)-enhanced NfoR belongs to a new branch of Cr (VI) reductases and profoundly influences Cr (VI) reduction.


Assuntos
Proteínas de Bactérias/metabolismo , Carcinógenos Ambientais/metabolismo , Cromo/metabolismo , Coenzimas/metabolismo , Cobre/metabolismo , FMN Redutase/metabolismo , Proteínas de Bactérias/genética , Biocatálise , Biodegradação Ambiental , FMN Redutase/genética , Sedimentos Geológicos/microbiologia , Oxirredução , Staphylococcus aureus
12.
J Hazard Mater ; 307: 193-201, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26780698

RESUMO

The compound p-nitrophenol, which shows the anti-androgenic activity, can easily become anthropogenic pollutants and pose a threat to the environment and human health. Previous work indicates that the anti-androgenic mechanism of p-nitrophenol is complex and may involve several components in the AR signaling pathway, but the molecular details of how p-nitrophenol inhibits AR signaling are still not quite clear. Here, we characterized p-nitrophenol binds to the FK1 domain of an AR positive regulator FKBP51 with micromolar affinity and structural analysis of FK1 domain in complex with p-nitrophenol revealed that p-nitrophenol occupies a hydrophobic FK1 pocket that is vital for AR activity enhancement. Molecular dynamics simulation indicated that p-nitrophenol is stably bound to the FK1 pocket and the hotspot residues that involved p-nitrophenol binding are mainly hydrophobic and overlap with the AR interaction site. Furthermore, we showed that p-nitrophenol inhibits the androgen-dependent growth of human prostate cancer cells, possibly through down-regulating the expression levels of AR activated downstream genes. Taken together, our data suggests that p-nitrophenol suppresses the AR signaling pathway at least in part by blocking the interaction between AR and its positive regulator FKBP51. We believe that our findings could provide new guidelines for assessing the potential health effects of p-nitrophenol.


Assuntos
Antagonistas de Receptores de Andrógenos/toxicidade , Disruptores Endócrinos/toxicidade , Nitrofenóis/toxicidade , Receptores Androgênicos/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Antagonistas de Receptores de Andrógenos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Disruptores Endócrinos/química , Humanos , Simulação de Dinâmica Molecular , Nitrofenóis/química , Estrutura Terciária de Proteína , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação a Tacrolimo/química
13.
J Struct Biol ; 174(1): 252-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21055474

RESUMO

The surface protein Spr1345 from Streptococcus pneumoniae R6 is a 22-kDa mucin-binding protein (MucBP) involved in adherence and colonization of the human lung and respiratory tract. It is composed of a mucin-binding domain (MucBD) and a proline-rich domain (PRD) followed by an LPxTG motif, which is recognized and cleaved by sortase, resulting in a mature form of 171 residues (MF171) that is anchored to the cell wall. We found that the MucBD alone possesses comparable in vitro mucin-binding affinity to the mature form, and can be specifically enriched at the surface of human lung carcinoma A549 cells. Using single-wavelength anomalous dispersion (SAD) phasing method with the iodine signals, we solved the crystal structure of the MucBD at 2.0Å resolution, the first structure of MucBDs from pathogenic bacteria. The overall structure adopts an immunoglobulin-like fold with an elongated rod-like shape, composed of six anti-parallel ß-strands and a long loop. Structural comparison suggested that the conserved C-terminal moiety may participate in the recognition of mucins. These findings provided structural insights into host-pathogen interaction mediated by mucins, which might be useful for designing novel vaccines and antibiotic drugs against human diseases caused by pneumococci.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Mucinas/metabolismo , Streptococcus pneumoniae/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
14.
J Mol Biol ; 398(4): 614-22, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20347849

RESUMO

Glutaredoxins (Grxs) are a ubiquitous family of proteins that reduce disulfide bonds in substrate proteins using electrons from reduced glutathione (GSH). The yeast Saccharomyces cerevisiae Grx6 is a monothiol Grx that is localized in the endoplasmic reticulum and Golgi compartments. Grx6 consists of three segments, a putative signal peptide (M1-I36), an N-terminal domain (K37-T110), and a C-terminal Grx domain (K111-N231, designated Grx6C). Compared to the classic dithiol glutaredoxin Grx1, Grx6 has a lower glutathione disulfide reductase activity but a higher glutathione S-transferase activity. In addition, similar to human Grx2, Grx6 binds GSH via an iron-sulfur cluster in vitro. The N-terminal domain is essential for noncovalent dimerization, but not required for either of the above activities. The crystal structure of Grx6C at 1.5 A resolution revealed a novel two-strand antiparallel beta-sheet opposite the GSH binding groove. This extra beta-sheet might also exist in yeast Grx7 and in a group of putative Grxs in lower organisms, suggesting that Grx6 might represent the first member of a novel Grx subfamily.


Assuntos
Glutarredoxinas/química , Glutarredoxinas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Dimerização , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
15.
EMBO Rep ; 10(12): 1320-6, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19851333

RESUMO

Glutathione-S-transferases (GSTs) are ubiquitous detoxification enzymes that catalyse the conjugation of electrophilic substrates to glutathione. Here, we present the crystal structures of Gtt2, a GST of Saccharomyces cerevisiae, in apo and two ligand-bound forms, at 2.23 A, 2.20 A and 2.10 A, respectively. Although Gtt2 has the overall structure of a GST, the absence of the classic catalytic essential residues--tyrosine, serine and cysteine--distinguishes it from all other cytosolic GSTs of known structure. Site-directed mutagenesis in combination with activity assays showed that instead of the classic catalytic residues, a water molecule stabilized by Ser129 and His123 acts as the deprotonator of the glutathione sulphur atom. Furthermore, only glycine and alanine are allowed at the amino-terminus of helix-alpha1 because of stereo-hindrance. Taken together, these results show that yeast Gtt2 is a novel atypical type of cytosolic GST.


Assuntos
Glutationa Transferase/química , Glutationa Transferase/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Catálise , Cristalografia por Raios X , Citosol/enzimologia , Citosol/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA